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ABSTRACT

Device-free localization (DFL) is the practice of locating people or objects when

no tag or device is attached to the entity being tracked. DFL technologies are useful

in applications where the targets being tracked and detected are not expected to

cooperate with the system. This may be the case because the entities being tracked

are evading surveillance, because they are unable, or because they do not want to be

inconvenienced. This dissertation discusses some novel and cost-effective methods

for locating people with received signal strength (RSS) measurements in wireless

networks.

The first contribution of this work presents a linear model for using received

signal strength (RSS) measurements to obtain images of moving objects, a process

called radio tomographic imaging (RTI). Noise models are investigated based on

real measurements of a deployed RTI system. Mean-squared error (MSE) bounds

on image accuracy are derived, which are used to calculate the accuracy of an

RTI system for a given node geometry. The ill-posedness of RTI is discussed, and

Tikhonov regularization is used to derive an image estimator.

We then present variance-based RTI, which takes advantage of the motion-

induced variance of received signal strength measurements. Using a multipath

channel model, we show that the signal strength on a wireless link is largely depen-

dent on the power contained in multipath components that travel through space

containing moving objects. A statistical model relating variance to spatial locations

of movement is presented and used as a framework for the estimation of a motion

image.

The final contribution of this dissertation introduces measurement-based sta-

tistical models that can be used to estimate the locations of people using signal

strength measurements in wireless networks. We demonstrate, using extensive

experimental data, that changes in signal strength measurements due to human

motion can be modeled by the skew-Laplace distribution. The parameters of



the distribution are dependent on the position of person and on the amount of

fading that a particular link experiences. Using the skew-Laplace likelihood model,

we apply a particle filter to experimentally estimate the location of moving and

stationary people through walls.
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CHAPTER 1

INTRODUCTION

1.1 Copyright Notice

Some material contained within this dissertation has been previously published

and is used with permission.

• Copyright 2010 IEEE, Reprinted, with permission, from IEEE Transactions

on Mobile Computing, “Radio Tomographic Imaging With Wireless Networks

”, J. Wilson and N. Patwari.

• Copyright 2010 IEEE, Reprinted, with permission, from IEEE Transactions

on Mobile Computing, “See Through Walls: Motion Tracking Using Variance-

Based Radio Tomography Networks”, J. Wilson and N. Patwari.

1.2 Overview of Device-Free Localizaiton

Knowing the location of people is extremely valuable. Global positioning sys-

tems (GPS), radio frequency identification (RFID) and real-time location systems

(RTLS) have proven their value for locating targets with an attached device. Device-

free localization (DFL) is the practice of locating people or objects when no tag or

device is attached to the entity being located. This dissertation discusses some

new and cost-effective methods for locating people through received signal strength

(RSS) measurements in wireless networks.

The term “device-free localization” is important in distinguishing DFL systems

from “passive” tagging systems. In passive RFID, for example, the entities being

tracked or detected carry a device that back-scatters a signal using a electromagnetic

resonance structure. Although the tag is not actively powered by a voltage source,

it cannot be considered device-free. The terms “tagless” and “tag-free” are often

used synonymously with “device-free.”
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DFL technologies are useful in applications where the targets being tracked and

detected are not expected to cooperate with the system. This may be the case

either because the entities being tracked are evading surveillance, because they are

unable, or because they do not want to be inconvenienced by carrying a device.

Examples of such applications are listed below.

• Security and alarm systems

• Military, police, and SWAT operations

• Fire and disaster rescue

• Shopper and retail behavior analysis

• Elderly and handicap assistance

• Home and building automation

The practicality of each of these applications is sensitive to financial costs.

For example, military DFL systems may be extremely expensive and yet still

practical for deployment. On the other hand, handicap assistance and building

automation solutions must be achievable when constrained by much lower financial

limits. Developing cost-effective tracking solutions for these and other applications

is therefore an important field of research, and the methods discussed in this work

are intended to provide cost-efficient DFL solutions.

1.3 Sensor technologies

A number of possible sensor technologies could be used for the purposes of DFL,

depending on the needs and constraints of the application. Some applications may

require a detailed view of the actions of the targeted entities, while others may

only require a coarse estimate of location. This section describes the most common

sensors used in DFL systems today, along with their advantages and disadvantages.

Some successful DFL systems deploy a combination of the technologies described

here [1].
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1.3.1 Optical Cameras

The most common form of DFL sensor is the optical camera [2]. Cameras

have the often desirable feature that details of the actions of an individual, or

identification of the individual, can be determined. This can be very powerful in

security systems, since the characteristics of the intruder can be monitored directly

or reviewed at a later time. DFL systems are primarily concerned with the location

of an individual, so video analytic software is used to infer the position of a target

using data from one or more cameras.

Cameras suffer from a few key limitations. First, they cannot penetrate opaque

materials and structures. If an object blocks the line-of-sight (LOS) path, the ability

of the camera to monitor an area is severely hampered. This may be accidental

or intentionally carried out by a perpetrator. Second, cameras require very large

bandwidths to transfer data to a security processing station. Even low-resolution

cameras require data rates that may be unreasonable for remote monitoring of sites.

Third, cameras have a limited angle of view, so many devices may be required to

cover a large area, or an area with many opaque obstructions. Video stitching

systems are computationally expensive and difficult to maintain, since changes in

the environment usually require adjustment of the positioning of the device. Finally,

the ability to determine characteristics and actions of an individual may prevent

its use in privacy-sensitive applications. For example, using cameras to track the

location of a senior in a disability assistance system would be undesirable for most

people. Tracking shoppers in retail stores may also fall into this category.

1.3.2 Thermal Cameras

Thermal cameras are a variant of the optical camera that are extremely pow-

erful for many applications, especially police and military operations [3]. Thermal

cameras utilize a directional heat sensor in similar form to those for optical sensing.

The advantage here is that a thermal sensor does not need an external source of

light to maintain vision of a subject. Thus, a thermal camera can track the location

of an individual in the dark or through non-insulating obstructions like fabric. This

can enable applications like concealed weapon and explosive detection [4].

Many of the limitations of the optical camera apply to the thermal version.
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Limited view angles, insulating obstructions, and high bandwidths hamper a ther-

mal sensor’s effectiveness in obstructed areas. Furthermore, thermal cameras are in

general much more expensive than their optical counterparts.

1.3.3 Infrared

Infrared cameras are essentially equivalent to optical cameras, except that they

sense optical frequencies below that of what a human can see. This is useful for

night-vision, as a scene can be illuminated by an infrared source while not being

noticed with the naked eye.

Passive infrared (PIR) systems, on the other hand, rely on infrared frequencies

that occur naturally from the area of surveillance. Most home security motion de-

tection systems are based around PIR sensors, and are triggered by abrupt changes

to the infrared image. Sunlight and other environmental factors can therefore easily

trigger such a detector.

Once again, most of the same limitations of the optical camera apply to infrared

cameras and sensors. Opaque obstructions, limited view angles, financial costs, and

bandwidth issues may limit infrared camera effectiveness in some DFL applications.

1.3.4 Acoustic, Vibration, and Ultrasound

Microphones measure changes in air pressure in typical human audible frequen-

cies (20Hz-22KHz). Acoustic DFL systems function by placing many microphones

around an area. As a person or target moves throughout the vicinity, sound caused

by the targets is captured by the microphones and processed to infer location. This

can be done in a coarse manner, by detecting sounds within a particular radius

of each microphone, or in a more sophisticated manner, by analyzing the strength

and time of arrival of signals. This idea has been used in real-time sniper detection

systems used by military organizations [5].

Vibration systems can allow a system to infer target location in a similar manner

to that of acoustic microphone systems. Each sensor may have a particular radius

of detection that can be used to determine a coarse location estimate, or a process-

ing of multiple sensors can provide a continuous tracking solution [1]. Vibration

sensors may also determine some characteristics of the target being tracked, such as
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distinguishing between a human and a vehicle based on the amplitude or spectral

components of vibration signals.

For some applications, using microphones and vibration sensors to infer target

position is problematic. An intruder walking very quietly in a building may be able

to evade a security system based on microphones, since some amount of ambient

noise is always present. As another example, tracking someone in a grocery store

with a microphone DFL system would also be difficult, as announcements or music

over the store’s speaker system would cause a significant amount of interference.

Vibration sensors may also fail for similar reasons.

Like acoustic sensors, ultrasound also takes advantage of air-pressure sensing,

but it does so at frequencies that are inaudible to the human ear [6,7]. Ultrasound

can be used for DFL purposes by emitting an ultrasonic pulse, and then sensing the

time of arrival, strength, and angle of arrival of the reflections in the environment.

When a person enters an area, their body reflects these ultrasonic pulses and the

system can estimate a position. Ultrasound may provide an attractive form of DFL

in some scenarios, but obstructions like walls attenuate the signals significantly.

1.3.5 Radio Frequency

Another form of DFL utilizes radio frequency sensors [8]. In these systems, a

target’s position can be inferred by measuring the reflection, absorption, scattering,

and/or diffraction of an electromagnetic wave by the target’s mass. Radio frequency

DFL systems (RF-DFL) have various forms, including ultra-wideband, narrowband,

and RSS-based. Section 1.4 is a brief introduction to these different forms.

There is an advantage to sensing radio frequency (RF) energy to infer a target’s

location as opposed to the alternatives previously discussed. Radio frequency waves

can penetrate nonmetal walls, smoke [9], and other opaque obstructions. Thus

RF-based DFL technologies do not require floodlights to work at night, and can

locate people in a smoke-filled building, or from the exterior. The following section

discusses RSS-DFL technologies, as this is the focus of the work presented in this

dissertation.
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1.4 Radio Frequency DFL Technologies

A significant quantity of research has shown results that locate people in build-

ings using RF sensor measurements [8, 10–21]. Results have been presented which

count the number of people moving [12], estimate a person’s location [17,18,21,22],

and image the movements in an area of interest [15–17,19], all in real-world multi-

path environments.

Previous work reports an accuracy of less than 1m of average error [11, 17, 18]

or less than 2m median error over a 1500 m2 area [21]; these results are at least

as good as reported location error when locating radio tagged objects [23,24]. The

comparable accuracy is interesting given that these technologies are device-free.

1.4.1 Ultra-Wideband (UWB)

Ultra-wideband receivers measure the amplitudes, time delays, and phases of the

multipath signals which exist in the radio channel. Measured at multiple probing

times t, UWB measurements and the changes between them can be used to infer

both the properties of the static propagation environment, and the changes in the

environment which might indicate a moving person or object. UWB transceivers

are certainly more cost-prohibitive than narrowband transceivers, but the ability to

distinguish time delay is a key benefit.

Transmitting and receiving an UWB pulse (or for that matter, high bandwidth

signal) allows one to measure the channel impulse response (CIR). Assume at time

t, N(t) multipath components arrive at the RX, with the ith component having

complex amplitude gain of αi(t) and time delay τi(t). As a complex value, αi(t) can

be written as |αi(t)| exp[j∠αi(t)]. The CIR is [25],

h(t, τ) =
N∑
i=1

αi(t)δ(τ − τi(t)) (1.1)

where δ(·) is the Dirac impulse function.

The knowledge of time delay provides important information about position.

Comparing the delay τi(t) to the line-of-sight time delay (assuming it is known)

indicates the excess delay, which gives some knowledge of the spatial incidence of

the ith multipath. For example, if the path was assumed to result from a single

change in direction, then that object that caused the bounce is located somewhere



7

on an ellipse of a certain size, with the TX and RX as foci [26]. When time delay is

measured on multiple links, the intersection between ellipses is an estimate of the

object location.

1.4.2 Narrowband

Narrowband receivers cannot provide information about individual multipath,

only the signal magnitude and phase as a whole. However, narrowband transceivers

are produced in high quantity for commercial applications, thus their low cost is a

key part of enabling large scale RF sensor networks.

Narrowband wireless devices simply measure the sum of the contributions of all

multipath. We consider a continuous-wave (CW) signal, which results in a received

complex baseband voltage, Ṽ , of

Ṽ = VT

N∑
i=1

αi(t) =
N∑
i=1

Vi(t) (1.2)

where VT is the complex baseband voltage at the TX, and Vi(t) = VTαi(t) is the

complex baseband voltage of component i at the RX [25].

There is information about position contained in Ṽ . First, the information in

the magnitude of Ṽ will be discussed below. Secondly, Ṽ , when compared to the

Ṽ measured at other RX locations or at multiple antennas, provides information

about the azimuth or elevation angles-of-arrival of the multipath signals [27], and

can be used in multiple wave field reconstruction techniques.

Typical distributed wireless sensors have difficulty with accurate timing syn-

chronization [28], and for coherent phase measurements, phase synchronization

is required. Phase synchronization means that the carrier used by two different

transceivers must have the same phase. Since the carrier phase changes from 0 to

2π each carrier cycle, timing synchronization errors must be much less than 1/fc,

where fc is the carrier frequency. For example, at 900 MHz, timing errors must be

much smaller than one nanosecond. A future challenge in DFL is to either provide

practical means for phase-coherent measurements of Ṽ at disparate sensors, such as

interferometric methods [29], or to achieve some of the benefits of phase-coherent

measurements using non-coherent measurements.
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1.4.3 Received Signal Strength (RSS)

In this section, we consider measurements of RSS for the purposes of DFL. Com-

pared to the narrowband measurements presented above, RSS is a magnitude-only

measurement. Measurements of RSS are ubiquitous in nearly all wireless devices.

The received power is the squared magnitude of the complex baseband voltage Ṽ .

What we typically call the “received signal strength” (RSS) is a measurement of

the received power in decibel terms. For a narrowband receiver, this power is

RdB = 20 log10 |Ṽ | = PT + 20 log10

∣∣∣∣∣
N∑
i=1

αi(t)

∣∣∣∣∣ (1.3)

where PT = 20 log10 |VT |.

One source of information in RdB is its magnitude. For links with a strong LOS

component, when that strong component is blocked, RdB tends to decrease. This

is called shadowing, and a sharp decrease in RdB can be used to infer that a person

or object is located along the LOS path [15].

Further, multipath fading is a source of location information. Depending on the

phases of each Vi(t), the sum in (1.2) may be destructive (with opposite phases)

or constructive (with similar phases). Measurements of fading are one source of

information about the location or number of moving people in the environment.

Fading can be quantified, for example, with the variance of RdB [12, 17], by the

absolute value of differences [11,30], or even the link quality indicator (LQI) [12].

The variance of RdB has been shown to be approximately linearly related to the

total power in multipath components affected by the movement in the environment

[31].

Although individual RSS measurements are less informative about person loca-

tion than UWB measurements, an RSS-only approach claims a few key strengths.

The low cost of RSS-only narrowband radios allows for many nodes to be deployed

in many cost-sensitive applications. Since measurements are made between pairs

of RF sensors, the number of measurements increases as O (N2), and the overall

capability of the RF sensor network can be very significant. Since the sensing is

performed in a distributed manner, the network can be thrown or launched around

an area, a key advantage over large and centralized radar devices.
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1.5 Contribution of this Dissertation

The work presented in this dissertation is focused on DFL systems using only

RSS measurements in wireless networks. The following publications have resulted

from this work.

• J. Wilson and N. Patwari, “Radio Tomographic Imaging in Wireless Net-

works”, IEEE Transactions on Mobile Computing, 2010 [15]

• J. Wilson and N. Patwari, “See Through Walls: Motion-Tracking Using Variance-

Based Radio Tomography Networks”, IEEE Transactions on Mobile Comput-

ing, 2010 [17]

• J. Wilson and N. Patwari, “Regularization Methods for Radio Tomographic

Imaging”, Proceedings of the Virgina Tech Wireless Symposium, 2009 [16]

• N. Patwari and J. Wilson, “RF Sensor Networks for Device-Free Localizaiton

and Tracking”, Proceedings of the IEEE. (Accepted) May, 2010

• N. Patwari and J. Wilson, “People-Sensing Spatial Characteristics of RF

Sensor Networks”, arXiv:0911.1972 [cs.NI], Nov., 2009

The technologies discussed in this dissertation have led to the following awards:

• ACM Mobicom, “Best Demonstration”, San Francisco, California, 2008

• Winner of Opportunity Quest, The University of Utah Business Innovation

Competition, 2009

• Finalist in the Utah Entrepreneurial Challenge, 2010

The research in this dissertation has been featured in international media, including:

• The Economist, “Looking Beyond: Through-the-Wall Vision”, Oct, 2009

• Discover Magazine, “Beyond X-Ray Vision”, May, 2010

• Der Spiegel, “Radio Waves: U.S. Scientists Peer Through Walls”, Oct, 2009

• Front page of NSF.gov, Nov, 2009



10

• KSL and Fox News in Salt Lake City, UT, Oct, 2009

• Online: Der Spiegel, UK Telegraph, MIT Technology Review, ScienceNow,

Popular Science, Wired, Ars Technica, Slashdot, Lifehacker, and others.

Chapter 2 introduces a new technology called “radio tomographic imaging”

(RTI). RTI images changes in attenuation by taking into account the drop in signal

strength when a person is located on the LOS of a wireless link. Noise models

for RTI are investigated, error bounds are derived, and experimental results are

presented. Symbol definitions for this chapter are displayed in Table 1.1.

Chapter 3 discusses a few common forms of regularization for ill-posed inverse

problems. These regularization methods are applied to RTI data, and the experi-

mental results are presented. Some forms of regularization, such as Tikhonov, are

appealing due to the computational simplicity. Others, such as total variation,

provide sharper contrast at the cost of computational resources. Symbol definitions

for this chapter are displayed in Table 1.1.

Chapter 4 presents a new form of RTI called variance-based radio tomographic

imaging (VRTI). In rich multipath environments, the shadowing models developed

in RTI are inaccurate. Signal strength changes no longer are the result of shadowing,

but of multipath fading. To address this limitation, measurements of RSS variance

are used to image motion within an area. Experimental results show that this

technique can be used to track the location of a moving person behind walls. Symbol

definitions for this chapter are displayed in Table 1.2.

Chapter 5 presents a statistical inversion approach to DFL in wireless networks.

Instead of modeling the problem as a traditional least-squares formulation with

regularization, likelihood distributions are modeled and used to statistically invert

the problem. Results demonstrate the ability of the statistical inversion method to

locate both moving and stationary targets behind walls. Symbol definitions for this

chapter are displayed in Table 1.3.

Finally, chapter 6 concludes this dissertation. The key research findings are

summarized, and opportunities for future research are discussed.
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Table 1.1. Chapter 2 and 3 symbols, in the order in which they appear.

Symbol Meaning
N,K,M The number of pixels, nodes, and links in an RTI network
yi(t) The signal strength measured on link i at time t in dBm
Pi The transmitted power on link i
Si(t) Shadowing loss on link i at time t in dB
Fi(t) Fading loss on link i at time t in dB
Li Static loss on link i at time t in dB
νi(t) Measurement noise on link i at time t in dB
∆yi Change in RSS in dBm on link i
ni Measurement and modeling noise on link i
∆y Vector of change in RSS for each link
∆x Vector of change in attenuation for each pixel
W Weighting or transfer matrix for the RTI model
dij Distance from node i to node j
x,y Aliases for ∆x and ∆x
x̂ Estimate of x
Rε Error correlation matrix of x

JD,JP Fischer and prior information matrix
CX Covariance matrix of x
dkl Distance from pixel k to pixel l
∆p Pixel width (m)
λ Width of weighting ellipse
δc Pixel correlation constant
σ2
x Pixel variance
γ MSE Image error bound parameter

U,Σ, V Singular value decomposition matrices
α Regularization parameter

DX ,DY Tikhonov difference matrices
RH Human radius
β Total variation smoothness parameter

NSF Acknowledgement

This material is based upon work supported by the National Science Foundation

under Grant No. ECCS-0748206. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation.
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Table 1.2. Chapter 4 symbols, in the order in which they appear.

Symbol Meaning
N Number of pixels in an image
M Number of links in a network
x(j) A binary variable indicating if motion occurs in pixel j

Ṽ Complex baseband voltage measured at the receiver
ν Additive noise measured at the receiver
Vi Magnitude of ith multipath component
Φi Phase of ith multipath component
RdB Received signal power in dB
wj Variance caused by motion in pixel j
W Weighting matrix for each pixel and link
s Variance vector measured on each link of the network
n Noise vector for each link of the network
TAP Total affected power
A(x) Indices of affected multipath components
V̄ Specular voltage measured at the receiver
Φ̄ Specular phase measured at the receiver
K K factor of a Rician random variable
σ2 Affected power and noise variance
σ2
v Variance of noise ν
Si Subset of space for propagation of link i
zj Location of the center of pixel j
dl Length of link l from node to node

dlj(1), dlj(2) Distance of pixel j to each node of link l
xT ik Tikhonov regularized estimation of x
Q Tikhonov matrix
υm Kalman state process standard deviation
υn Kalman measurement noise standard deviation
∆p Pixel width (ft)
λ Width parameter of weighting ellipse (ft)
α Regularization parameter
ψ Variance weighting scale (dB)2

NB Length of RSS buffer
ε, ζ Average tracking error for natural and spot movement
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Table 1.3. Chapter 5 symbols, in the order in which they appear.

Symbol Meaning
F Fade level of a link
Pm Mean received signal strength of a link
X State space
Y Measurement space
PT Transmitted power
P (d) Ensemble mean power at distance d
Π0 Reference power
∆0 Reference distance
a Negative decay of skew-Laplace distribution
b Positive decay of skew-Laplace distribution
ψ Mode of skew-Laplace distribution
xk True location of targets at time k
x̃ik Particle proposal i at time k
wik Weighting of particle i at time k
yk Change in signal strength at time k



CHAPTER 2

RADIO TOMOGRAPHIC IMAGING WITH

WIRELESS NETWORKS

2.1 Abstract

Radio Tomographic Imaging (RTI) is an emerging technology for imaging the

attenuation caused by physical objects in wireless networks. This paper presents a

linear model for using received signal strength (RSS) measurements to obtain images

of moving objects. Noise models are investigated based on real measurements of a

deployed RTI system. Mean-squared error (MSE) bounds on image accuracy are

derived, which are used to calculate the accuracy of an RTI system for a given node

geometry. The ill-posedness of RTI is discussed, and Tikhonov regularization is

used to derive an image estimator. Experimental results of an RTI experiment with

28 nodes deployed around a 441 square foot area are presented.

2.2 Introduction

When an object moves into the area of a wireless network, links which pass

through that object will experience shadowing losses. This paper explores in detail

the use of shadowing losses on links between many pairs of nodes in a wireless

network to image the attenuation of objects within the network area. We refer to

this problem as radio tomographic imaging 1 (RTI), as depicted Fig. 2.1.

RTI may be useful in emergencies, rescue operations, and security breaches, since

the objects being imaged need not carry an electronic device. Using the images to

track humans moving through a building, for example, provides a basis for new

applications in security systems and “smart” buildings.

1This chapter first appeared in J. Wilson and N. Patwari, “Radio Tomographic Imaging
with Wireless Networks”, IEEE Transactions on Mobile Computing, 2010, and is reprinted with
permission.
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The reduction in costs for radio frequency integrated circuits (RFICs) and

advances in peer-to-peer data networking have made realistic the use of hundreds

or thousands of simple radio devices in a single RTI deployment. Since the relative

cost of such devices is low, large RTI networks are possible in applications that may

be otherwise impractical.

Radio tomography draws from the concepts of two well-known and widely used

types of imaging systems. First, radar systems transmit RF probes and receive

echoes caused by the objects in an environment [32]. A delay between transmission

and reception indicates a distance to a scatterer. Phased array radars also compute

an angle of bearing. Such systems image an object in space based on reflection

and scattering. Secondly, computed tomography (CT) methods in medical and

geophysical imaging systems use signal measurements along many different paths

through a medium. The measurements along the paths are used to compute

an estimate of the spatial field of the transmission parameters throughout the

medium [33]. RTI is also a transmission-based imaging method which measures

signal strengths on many different paths through a medium, but similar to radar

systems, it does so at radio frequencies. It also faces two significant challenges:

• The system discussed in this paper measures only signal strength. No infor-

mation about the phase or the time-domain of a signal is available.

• The use of RF, as opposed to much higher frequency EM waves (e.g., x-rays),

introduces significant non-line-of-sight (NLOS) propagation in the transmis-

sion measurements. Signals in standard commercial wireless bands do not

travel in just the line-of-sight (LOS) path, and instead propagate in many

paths from a transmitter to a receiver.

2.2.1 Applications

Despite the difficulties of using RF, there is a major advantage: RF signals

can travel through obstructions such as walls, trees, and smoke, while optical or

infrared imaging systems cannot. RF imaging will also work in the dark, where

video cameras will fail. Even for applications where video cameras could work,

privacy concerns may prevent their deployment. An RTI system provides current
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images of the location of people and their movements, but cannot be used to identify

a person.

One main future application of RTI is to reduce injury for correctional and law

enforcement officers; many are injured each year because they lack the ability to

detect and track offenders through building walls [34]. By showing the locations of

people within a building during hostage situations, building fires, or other emergen-

cies, RTI can help law enforcement and emergency responders to know where they

should focus their attention.

Another application is in automatic monitoring and control in “smart” homes

and buildings. Some building control systems detect motion in a room and use it

to control lighting, heating, air conditioning, and even noise cancellation [35]. RTI

systems can further determine how many people are in a room and where they are

located, providing more precise control.

RTI has application in security and monitoring systems for indoor and outdoor

areas. For example, most existing security systems are trip-wire based or camera-

based. Trip-wire systems detect when people cross a boundary, but do not track

them when they are within the area. Cameras are ineffective in the dark and have

limited view angles. An RTI system could serve both as a trip-wire, alerting when

intruders enter into an area, and a tracking system to follow their movements.

2.2.2 Related Work

RF-based imaging has been dominated in the commercial realm by ultra-wideband

(UWB) based through-the-wall (TTW) imaging devices from companies like Time

Domain [36], Cambridge Consultants [37], and Camero Tech [38]. These companies

have developed products using a phased array of radars that transmit UWB pulses

and then measure echoes to estimate a range and bearing. These devices are

accurate close to the device, but inherently suffer from accuracy and noise issues at

long range due to mono-static radar scattering losses and large bandwidths. Some

initial attempts [39] allow 2-4 of these high-complexity devices to collaborate to

improve coverage.

In comparison, in this paper we discuss using dozens to hundreds of low-capability

collaborating nodes, which measure transmission rather than scattering and reflec-
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tion. Further, UWB uses an extremely wide RF bandwidth, which may limit its

application to emergency and military applications. RTI is capable of using radios

with relatively small bandwidths.

To emphasize the small required bandwidth compared to UWB, some relevant

research is being called “ultra-narrowband” (UNB) radar [40–42]. These systems

propose using narrowband transmitters and receivers deployed around an area to

image the environment within that area. Measurements are phase-synchronous at

the multiple nodes around the area. Such techniques have been applied to detect and

locate objects buried under ground using what is effectively a synthetic aperture

array of ground-penetrating radars [43]. Experiments have been reported which

measure a static environment while moving one transmitter or one receiver [42],

and measure a static object on a rotating table in an anechoic chamber in order to

simulate an array of transmitters and receivers at many different angles [40,42,43].

Multiple-input-multiple-output (MIMO) radar is another emerging field that

takes advantage of multiple transmitters and receivers to locate objects within a

spatial area [44]. In this framework, signals are transmitted into the area of interest,

objects scatter the signal, and the reflections are measured at each receiver. The

scattering objects create a channel matrix which is comparable to the channel matrix

in MIMO communication theory. RTI differs from MIMO radar in the same way

that it differs from traditional radar. Instead of measuring reflections, RTI uses the

shadowing caused by objects as a basis for image reconstruction.

Recent research has also used measurements of signal strength on 802.11 WiFi

links to detect and locate a person’s location. Experiments in [13] demonstrate

the capability of a detector based on signal strength measurements determine the

location of a person who is not carrying an electronic device. In this case, the

system is trained by a person standing at known positions, and RSS measurements

are recorded at each location. When the system is in use, RSS measurements are

compared with the known training data, and the best position is selected from a

list.

Our approach is not based on point-wise detection. Instead, we use tomographic

methods to estimate an image of the change in the attenuation as a function of space,

and use the image estimate for the purposes of indicating the position of a moving
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object.

2.2.3 Overview

Section 2.3 presents a linear model relating RSS measurements to the change

in attenuation occurring in a network area, and investigates statistics for noise in

dynamic multipath environments. Section 2.4 describes an error bound on image

estimation for a given node geometry. This is useful to determine which areas of

a network can be accurately imaged for a given set of node locations. Section 2.5

discusses the ill-posedness of RTI, and derives a regularized solution for obtaining

an attenuation image. Section 2.6 describes the setup of an actual RTI experiment,

the resultant images, and a discussion of the effect of parameters on the accuracy

of the images.

2.3 Model

2.3.1 Linear Formulation

When wireless nodes communicate, the radio signals pass through the physical

area of the network. Objects within the area absorb, reflect, diffract, or scatter some

of the transmitted power. The goal of an RTI system is to determine an image vector

of dimension RN that describes the amount of radio power attenuation occurring

due to physical objects within N voxels of a network region. Since voxel locations

are known, RTI allows one to know where attenuation in a network is occurring,

and therefore, where objects are located.

If K is the number of nodes in the RTI network, then the total number of unique

two-way links is M = K2−K
2

. Any pair of nodes is counted as a link, whether or

not communication actually occurs between them. The signal strength yi(t) of a

particular link i at time t is dependent on:

• Pi: Transmitted power in dB.

• Si(t): Shadowing loss in dB due to objects that attenuate the signal.

• Fi(t): Fading loss in dB that occurs from constructive and destructive inter-

ference of narrow-band signals in multipath environments.



19

• Li: Static losses in dB due to distance, antenna patterns, device inconsisten-

cies, etc.

• νi(t): Measurement noise.

Mathematically, the received signal strength is described as

yi(t) = Pi − Li − Si(t)− Fi(t)− νi(t) (2.1)

The shadowing loss Si(t) can be approximated as a sum of attenuation that

occurs in each voxel. Since the contribution of each voxel to the attenuation of

a link is different for each link, a weighting is applied. Mathematically, this is

described for a single link as

Si(t) =
N∑
j=1

wijxj(t). (2.2)

where xj(t) is the attenuation occurring in voxel j at time t, and wij is the weighting

of pixel j for link i. If a link does not “cross” a particular voxel, that voxel is removed

by using a weight of zero. For example, Fig. 2.2 is an illustration of how a direct

LOS link might be weighted in a nonscattering environment.

Imaging only the changing attenuation greatly simplifies the problem, since all

static losses can be removed over time. The change in RSS 4yi from time ta to tb

is

4yi ≡ yi(tb)− yi(ta)

= Si(tb)− Si(ta) + Fi(tb)− Fi(ta)

+νi(tb)− νi(ta), (2.3)

which can be written as

4yi =
N∑
j=1

wij4xj + ni, (2.4)

where the noise is the grouping of fading and measurement noise

ni = Fi(tb)− Fi(ta) + νi(tb)− νi(ta) (2.5)

and

4xj = xj(tb)− xj(ta) (2.6)

is the difference in attenuation at pixel j from time ta to tb.
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If all links in the network are considered simultaneously, the system of RSS

equations can be described in matrix form as

4y = W4x + n (2.7)

where

4y = [4y1,4y2, ...,4yM ]T

4x = [4x1,4x2, ...,4xN ]T

n = [n1, n2, ..., nM ]T

[W]i,j = wij (2.8)

In summary, 4y is the vector of length M all link difference RSS measurements,

n is a noise vector, and 4x is the attenuation image to be estimated. W is the

weighting matrix of dimension M×N , with each column representing a single voxel,

and each row describing the weighting of each voxel for that particular link. Each

variable is measured in decibels (dB).

To simplify the notation used throughout the rest of this paper, x and y are

used in place of 4x and 4y, respectively.

2.3.2 Weight Model

If knowledge of an environment were available, one could estimate the weights

{wij}j for link i which reflected the spatial extent of multiple paths between trans-

mitter and receiver. Perhaps calibration measurements could aid in estimation of

the linear transformation W. However, with no site-specific information, we require

a statistical model that describes the linear effect of the attenuation field on the

path loss for each link.

An ellipsoid with foci at each node location can be used as a method for

determining the weighting for each link in the network [45]. If a particular voxel falls

outside the ellipsoid, the weighting for that voxel is set to zero. If a particular voxel

is within the LOS path determined by the ellipsoid, its weight is set to be inversely

proportional to the square root of the link distance. Intuitively, longer links will

provide less information about the attenuation in voxels that they cross. When link

distances are very long, the signals reflect and defract around the obstructions. A
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link with a distance of only a few feet will experience more change in RSS when an

obstruction occurs than a link with a length of hundreds of feet.

Past studies have shown that the variance of link shadowing does not change

with distance. In accordance with these studies, dividing by the square root of the

link distance ensures that the voxel weighting takes this into account [46]. The

weighting is described mathematically as

wij =
1√
d

{
1 if dij(1) + dij(2) < d+ λ
0 otherwise

(2.9)

where d is the distance between the two nodes, dij(1) and dij(2) are the distances

from the center of voxel j to the two node locations for link i, and λ is a tunable

parameter describing the width of the ellipse.

The width parameter λ is typically set very low in RTI, such that it is essentially

the same as using the LOS model as depicted in Fig. 2.2. The use of an ellipsoid

is primarily used to simplify the process of determining which voxels fall along the

LOS path.

2.3.3 Noise

To complete the model of (2.7), the statistics of the noise vector n in (2.7) must

be examined. Here, noise is caused by time-varying measurement miscalibration of

the receiver, by the contribution of thermal noise to the measured receiver signal

strength, and time-variations in the multipath channel not caused by changes to

the attenuation experienced by the line-of-sight path. If these contributions are

constant with time, then the calibration (when moving attenuator existed in the

field) would have been able to establish it as the baseline. Time variation in RSS

measurement when no moving attenuator is blocking the line-of-sight path is “noise”

for an RTI system.

Past studies have considered the time-variation of RSS in fixed radio links. In

particular, the work and measurements of Bultitude [47] were used to design indoor

fixed wireless communications systems which periodically experienced fading due

to motion in the area of the link. Bultitude found that RSS experienced intervals

of significant fading which were caused by human motion in and around the area.

Most of the time, the measured RSS vary slowly around a nearly constant mean,

what we call a nonfading interval. When in a fading interval, RSS varies up to 10 dB
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higher and 20 dB below the nonfading interval mean, with a distribution that can

be characterized as a Rician distribution [47]. Other measurements find temporal

fading statistics more closely match a log-normal distribution [48]. The fading /

nonfading interval process can be modeled as a two-state Markov chain [49], which

alternates between a low-variance and high-variance distribution. Over all time,

measurements show a two-part mixture distribution for the RSS on a fixed link.

In linear terms, we could model this data as a mixture of two Rician distributions

as in [47]; we could also model it as a mixture of log-normal terms as suggested

by results in [48]. We note that the logarithm of a Rician random variable is often

similar in distribution to the log-normal, perhaps a cause of disagreement between

measurement studies. We choose to use the log-normal mixture model for simplicity;

in the (dB) scale, this is a two-part Gaussian mixture model:

fni
(u) =

∑
k∈{1,2}

pk√
2πσ2

k

exp

[
− u2

2σ2
k

]
, (2.10)

where pk is the probability of part k, p2 = 1− p1, σ2
k is the variance of part k, and

fni
(u) is the probability density function of the noise random variable ni. Without

loss of generality, we let σ2 > σ1 so that part 2 is the higher variance component of

the mixture.

Past radio link measurements have not distinguished between motion which

shadows the line-of-sight path (the signal in RTI), and motion which does not

shadow the line-of-sight path (the noise) [13,47–49]. To investigate the statistics of

RTI noise, we present experimental tests which measure the time-varying statistics

of links during motion which does not obstruct a link.

To collect experimental samples of noise, we set up 28 nodes in an indoor office

area empty of people. While the nodes are transmitting and measuring RSS on each

pairwise link, people move around the outside of the perimeter of the deployment

area. In no case did the motion of a person obstruct the LOS path of any link. From

each link, about 66,000 measurements were taken. For example, consider the data

on a typical link, the link (3, 20). The temporal fading plot in Figure 2.3(a) shows

similar results to [47], with alternating periods of heavy fading and low fading.

During low fading, data are confined within a range of 2-3 dB around -84 dBm.

During high fading, variations at ± 10 dB from the mean occur. The histogram
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shown in Fig. 2.3(b) correspondingly shows a mixture of one high-variance and one

low-variance distribution.

We also summarize the measured data on all
(

28
2

)
links. The mean was removed

from each link’s data, and the data was merged. Fig. 2.4(a) is a quantile-quantile

plot comparing the removed-mean RSS measurements with a Gaussian distribution

N (0, σ2
d), where σ2

d is the empirical variance of the measurements. The PDF is

approximated by a Gaussian within ±2.5 quantiles.

As described, the data seems to follow a mixture distribution. From measured

data, we estimate the mixture parameters with an expectation-maximization (EM)

algorithm [50], and the results are shown in Table 2.1. Fig. 2.4(b) is a quantile-

quantile plot comparing the removed-mean RSS measurements with a mixture

model with the stated parameters.

2.4 Error Bound

2.4.1 Derivation

This section presents a lower bound on estimation error for the linear model

(2.7) under the noise model discussed in Section 2.3.3. The estimation error vector

is defined as ε = x̂− x, and the error correlation matrix is

Rε = E
[
εεT
]
. (2.11)

A well-known result in estimation theory known as the MSE, Bayesian or Van Trees

bound states that the error correlation matrix is bounded by

Rε ≥ (JD + JP )−1 = J−1 (2.12)

where the inequality indicates that the matrix Rε−J−1 is positive semi-definite [51].

The matrix

JD = E[{∇x[lnP (y|x)]} {∇x[lnP (y|x)]}T ] (2.13)

is known as the Fisher information matrix and represents the information obtained

from the data measurements. The matrix

JP = E[{∇x[lnP (x)]} {∇x[lnP (x)]}T ] (2.14)

represents the information obtained from a priori knowledge about the random

parameters.
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We assume that the noise components n = [n1, . . . , nM ]T are independent and

identically distributed as two-component zero-mean Gaussian mixture random vari-

ables as in (2.10). The noise is independent because we assume nodes are placed at

distances larger than the coherence distance of the indoor fading channel.

From (2.13), we can derive that JD is given by [52, Eqn 10],

JD = γWTW

where γ =

∫ ∞
−∞

[f ′ni
(u)]2

fni
(u)

du (2.15)

and f ′ni
(u) is the derivative of fni

(u) with respect to u. When p2 = 0, that is, the

distribution of ni is purely Gaussian, γ reverts to 1/σ2
1, one over the variance of the

distribution. For two-component Gaussian mixtures, we compute γ in (2.15) from

numerical integration. For example, for the Gaussian-mixture model parameters

calculated from the measurement experiment, as given in Table 2.1, we find γ =

0.548.

To calculate JP , the prior image distribution P (x) must be known or assumed.

One possibility is to assume that x is a zero-mean Gaussian random field with

covariance matrix Cx. Then

P (x) =
1√

(2π)N |Cx|
e−

1
2

(xTC−1

x x) (2.16)

Plugging (2.16) into (2.14) results in

JP = C−1
x . (2.17)

These derivations of JD and JP lead to the linear MSE bound for RTI

Rε ≥ (γWTW + C−1
x )−1. (2.18)

An important result of the bound in (2.18) comes from the following property [51]

E[(x− x̂)2
i ] ≥ (γWTW + C−1

x )−1
ii = J−1

ii (2.19)

where E[(x − x̂)2
i ] represents the mean-squared-error for pixel i. In other words,

the diagonal elements of J−1 are the lower bounds on the mean-squared-error for

the corresponding pixels.
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2.4.2 Spatial Covariance Model

Previous work has shown that an exponential function is useful in approximating

the spatial covariance of an attenuation field [53], [46]. The exponential covariance

is a close approximation to the covariance that results from modeling the spatial

attenuation as a Poisson process, a common assumption for random placement of

objects in space. Applying this model, the a priori covariance matrix Cx is generated

by

[Cx]kl = σ2
xe
−dkl/δc , (2.20)

where dkl is the distance from pixel k to pixel l, δc is a “space constant” correlation

parameter, and σ2
x is the variance at each pixel.

The exponential spatial covariance model is appealing due to its simplicity

and low number of parameters. Other models based on different distributions of

attenuating objects could also be utilized.

2.4.3 Example Error Bounds

The bound in (2.19) provides a theoretical basis for determining the accuracy

of an image over the network area. The node locations affect which pixels are

accurately estimated, and which are not. To visualize how the node locations affect

the accuracy of the image estimation, three examples are provided in Figs. 2.5, 2.6

and 2.7. Table 2.2 shows the parameters of the normalized ellipse weighting model

that were used to generate these bounds.

As seen in the surfaces of Figs. 2.5, 2.6 and 2.7, voxels that are crossed by many

links have a higher accuracy than voxels that are rarely or never crossed. The voxels

in the corners of the square deployment, the sides of the front-back deployment, and

the low-density areas in the random deployment, are crossed only by a few links.

In some voxels, no links cross at all, and the bound surface is limited only by the

covariance of the prior statistics. The known covariance of the image has the effect

of smoothing the bound surface, since knowledge of the attenuation of a voxel is

statistically related to its neighbors.

2.4.4 Effect of Node Density

The node density plays a key role in the accuracy of an RTI result. Imaging can

be expected to be more accurate in areas where nodes are placed closely together
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than in areas where nodes are spaced at large distances. When many links pass

through a particular area, more RSS information can be used to reconstruct the

attenuation occurring in that area. This has the effect of averaging out noise and

other corruptions in the measurements. Furthermore, when links are close together,

the RSS information is more concentrated on the voxels that are crossed. This is

due to the weighting function that is inversely proportional to the square root of

the link distance.

To illustrate the effect of node density on the MSE bound, Fig. 2.8 shows the

lower bound on the average MSE over all voxels for the three deployment geometries

as the density is increased. For each point on the curves, the bound surface is

calculated, then averaged over all voxels. The parameters are equal to those used

previously in Table 2.2. Each geometry contains the same number of nodes for each

point on the curve, and is deployed around the same area. In the square geometry,

nodes are placed uniformly around a square area. In the front-back geometry, the

same number of nodes are placed along two sides of the square, resulting in the

same number of nodes per square foot. In the random geometry, the same number

of nodes are randomly placed throughout the square.

In all three cases shown in Fig. 2.8, the lower bound on average MSE for each

deployment decreases rapidly with increasing node density. The square geometry

outperforms the others, due to the fact that the entire area of the square is sur-

rounded by nodes. There are very few voxels that are not crossed by at least a few

links, and many short links exist that cross the corners of the square. The random

geometry performs the worst out of the three when density is low, largely due to

the fact that in a random deployment, many voxels will not be crossed by any

links. As density increases, the random deployment out-performs the front-back

geometry because nodes are closer together, and the density is such that very few

areas contain voxels that are not crossed by at least some links.

2.5 Image Reconstruction

2.5.1 Ill-posed Inverse Problem

Linear models for many physical problems, including RTI, take the form of

y = Wx + n (2.21)
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where y ∈ RM is measured data, W ∈ RM×N is a transfer matrix of the model

parameters x ∈ RN , and n ∈ RM is a measurement noise vector. When estimating

an image from measurement data, it is common to search for a solution that is

optimal in the least-squared-error sense.

xLS = arg min
x
||Wx− y||22 (2.22)

In other words, the least-squares solution minimizes the noise energy required to

fit the measured data to the model. The least-square solution can be obtained by

setting the gradient of (2.22) equal to zero, resulting in

xLS = (WTW)−1WTy (2.23)

which is only valid if W is full-rank. This is not the case in an RTI system.

RTI is an ill-posed inverse problem, meaning that small amounts of noise in

measurement data are amplified to the extent that results are meaningless. This

is due to very small singular values in the transfer matrix W that cause certain

spectral components to grow out of control upon inversion. To see this, W is

replaced by its singular value decomposition (SVD):

W = UΣVT (2.24)

where U and V are unitary matrices, and Σ is a diagonal matrix of singular values.

Plugging (2.24) into (2.23), the least squares solution can be written as

xLS = VΣ−1UTy =
N∑
i=1

1

σi
uTi yvi (2.25)

where ui and vi are the ith columns of U and V, and σi is the ith diagonal element of

Σ. It is evident that when singular values are zero or close to zero, the corresponding

singular basis vectors are unbounded upon inversion.

The heuristic explanation for the ill-posedness of the RTI model lies in the

fact that many pixels are estimated from relatively few nodes. There are multiple

possible attenuation images that can lead to the same set of measurement data. For

example, assume a particular pixel is not crossed by any link in the network. This

would result in the same measurement data for every possible attenuation value of

that pixel, so inversion of the problem would be impossible.
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Regularization involves introducing additional information into the mathemati-

cal cost model to handle the ill-posedness. In some methods, a regularization term

J(x) is added to the minimization objective function of the original problem as

freg = f(x) + αJ(x), (2.26)

where α is the weighting parameter. Small values of α lead to solutions that fit the

data, while large values favor the solution that matches prior information.

Some regularization techniques follow from a Bayesian approach, where a certain

prior distribution is imposed on the model parameters. Other forms of regularization

modify or eliminate small singular values of the transfer matrix. An overview of

regularization and image reconstruction in general can be found in [54] and [55].

2.5.2 Tikhonov Regularization

In Tikhonov regularization [54], an energy term is added to the least squares

formulation, resulting in the objective function

f(x) =
1

2
||Wx− y||2 + α||Qx||2, (2.27)

where Q is the Tikhonov matrix that enforces a solution with certain desired

properties.

In this paper, we use a difference matrix approximating the derivative operator

as the Tikhonov matrix Q. By minimizing the energy found within the image

derivative, noise spikes are suppressed and a smooth image is produced. This form

of Tikhonov regularization is known as H1 regularization.

Since the image is two dimensional, the regularization should include the deriva-

tives in both the vertical and horizontal directions. The matrix DX is the difference

operator for the horizontal direction, and DY is the difference operator for the

vertical direction. The regularized function can be written in this case as

f(x) =
1

2
||Wx− y||2 + α(||DXx||2 + ||DY x||2). (2.28)

Taking the derivative and setting equal to zero results in the solution

x̂ = (WTW + α(DT
XDX + DT

Y DY ))−1WTy. (2.29)
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One major strength of Tikhonov regularization lies in the fact that the solution

is simply a linear transformation Π of the measurement data.

Π = (WTW + α(DT
XDX + DT

Y DY ))−1WT (2.30)

x̂ = Πy (2.31)

Since the transformation does not depend on instantaneous measurements, it can

be pre-calculated, and then applied for various measurements for fast image recon-

struction. This is very appealing for realtime RTI systems that require frequent

image updates [45], [56].

The total number of multiplications Nmult required to transform the measure-

ments into the image is the total number of voxels N times the number of unique

links M in the network

Nmult = NM =
N(K2 −K)

2
(2.32)

where K is the number of nodes in the network. We see that complexity increases

linearly as the number of voxels increases, and quadratically as the number of nodes

in the network increases.

2.6 Experimental Results

2.6.1 Physical Description of Experiment

A wireless peer-to-peer network containing 28 nodes is deployed for the purpose

of testing the capability of RTI to image changed attenuation. Each node is placed

three feet apart along the perimeter of a 21x21 foot square, surrounding a total area

of 441 square feet. The network is deployed on a grassy area approximately 15 feet

away from the Merrill Engineering Building at the University of Utah. Each radio

is placed on a stand at three feet off the ground.

The area surrounded by the nodes contains two trees with a circumference of

approximately three feet. The network is intentionally placed around the trees

so that static objects exist in the tested RTI system. RTI should only image

attenuation that has changed from the time of calibration within the deployment

area. Markers are measured and placed in 35 locations within the network so

that the humans’ locations are known and can be utilized in the subsequent error

analysis. A map and photo of the experiment are shown in Fig. 2.9.
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The network is comprised of TelosB wireless nodes made by Crossbow. Each

node operates in the 2.4GHz frequency band, and uses the IEEE 802.15.4 standard

for communication. A base station node listens to all network traffic, then feeds

the data to a laptop computer via a USB port for the processing of the images.

Since the base station node is within range of all nodes, the latency of measurement

retrieval to the laptop is low, on the order of a few milliseconds. If a multi-hop RTI

network were to be deployed, this latency would certainly increase.

To avoid network transmission collisions, a simple token passing protocol is

used. Each node is assigned an ID number and programmed with a known order

of transmission. When a node transmits, each node that receives the transmission

examines the sender identification number. The receiving nodes check to see if it

is their turn to transmit, and if not, they wait for the next node to transmit. If

the next node does not transmit, or the packet is corrupted, a timeout causes each

receiver to move to the next node in the schedule so that the cycle is not halted.

At the arrival of each packet to the laptop, the RTI program running on the

laptop updates a link RSS measurement vector. At each update, the base station

hears from only one node in the network, so only RSS values on links involving that

particular node are updated. Each link’s RSS measurement is an average of the two

directional links from i to j and j to i.

In this experiment, the system is calibrated by taking RSS measurements while

the network is vacant from moving objects. The RSS vector is averaged over a

30 second period, which results in approximately 100 RSS samples from each link.

The calibration RSS vector provides a baseline against which all other RSS mea-

surements are differenced, as discussed in Section 2.3. Other methods of calibration

could be used in situations where it is impossible to keep the network vacant from

moving objects. For example, a single past measurement or a sliding window average

of RSS measurement history could be used as the baseline.

2.6.2 Effect of Human Obstruction

Since RTI is based on the assumption that objects shadow individual links in

a wireless network, it is helpful to examine the effect of obstructions on a single

link. In Fig. 2.10, a human stands at position (9,9) and RSS measurements for
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each link are collected. These measurements are compared with the calibration

measurements that were taken when the network was vacant.

The top plot in Fig. 2.10 shows that a significant decrease in RSS, anywhere

from 5 to 10 dB, is experienced by link (0,18) to (18,0) as it travels through the

obstruction. The middle plot shows that even though the link (9,0) to (9,21) passes

through the tree, it still experiences significant loss when the human is present on

the LOS path. The bottom plot in the figure shows an example of a link that does

not pass through the obstruction, resulting in very little difference in RSS.

In environments where links travel over long distances, or when many objects

block the direct LOS path, we expect the effect of a human obstruction to be

lessened. In those cases, certain links may experience losses, while others may not.

Future research will investigate the effect of human obstruction on a link’s RSS

when a link passes through walls or other major static obstructions. This will be

essential in making the technology practical for the future applications of RTI as

previously discussed.

2.6.3 Cylindrical Human Model

To assess the accuracy of RTI images, one must first know or assume the “true”

attenuation field that is being estimated. Since imaging the location of humans is

the primary goal of RTI, a model for the size, shape, and attenuation of the human

body at the frequencies of interest would be required. This information is difficult

to model, since it is dependent on body types, the plane of intersection, and other

variables.

For simplicity, a human is modeled as a uniformly attenuating cylinder with

radius RH . In this case, the “true” image xc for a human positioned at location cH

can be described as

xcj =

{
1 if ||xj − cH || < RH

0 otherwise
(2.33)

where xcj is the center location of voxel j.

By scaling the image such that the maximum equals one, resulting in the

normalized image x̂N , we can define the mean-squared error of the normalized

image to be

ε =
||xc − x̂N ||2

N
(2.34)
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where N is the number of voxels in the image.

2.6.4 Example Images

Using the model and reconstruction algorithms described in Sections 2.3 and 2.5,

we present some typical image results for humans standing inside the experimental

RTI network. A human stands at coordinate (9,9) and RSS data are measured for a

few seconds. The data are averaged for 10 samples per link, and this measurement

differenced with the calibration data taken while the network is vacant. Figures

2.11 and 2.12 display both the “true” attenuation based on the cylindrical model,

and the RTI reconstruction using H1 regularization with the parameters listed in

Table 2.3.

Using the cylindrical human model with a radius of RH = 1.3, the squared error

for the single-human image standing at (9,9) was measured to be ε = .021. The

squared error for the two-person image was measured to be ε = .036. These error

values are in general agreement with the bounds derived in Section 2.4.

There are many areas in the images of Figs. 2.11 and 2.12 where estimated

attenuation is above zero, even where no obstruction exists. This is due to the fact

that a human not only attenuates a wireless signal, it reflects and scatters it. The

simple LOS model used in this paper does not take into account the changes in RSS

values due to multipath caused by the obstructions being imaged. For example, a

link may be bouncing off the human and destructively interfering with itself on

a path that does not cross through the obstruction, thus leading to error in the

estimated attenuation. Future research will seek to refine the weighting model used

in RTI such that this modeling error is lessened.

2.6.5 Effect of Parameters on Image Accuracy

The weighting and regularization parameters play an important role in generat-

ing accurate RTI images. If the problem is regularized too strongly, the resultant

images may be too smooth to provide a good indication of obstruction boundaries.

If the regularization parameter is set too low, noise may corrupt the results, making

it difficult to know if a bright spot is an obstruction or noise.

Another parameter effecting the accuracy of an image is the width of the weight-

ing ellipse. If the ellipse is too wide, the detail of where attenuation is occurring
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within the network may be obscured. If the ellipse is too narrow, voxels that do in

fact attenuate a link’s signal may not be captured by the model. This may result

in a loss of information that degrades the final image quality.

In this paper, we empirically identify the parameters that provide the most

accurate images using the cylindrical human model. For each parameter, images

are formed from data measured while a human is standing at one of the known

positions, as indicated in Fig. 2.9(a). Such an image is formed for each of the

possible human positions shown in Fig. 2.9(a). The squared error is calculated

for each image, and averaged over the entire set. This is performed for a varying

regularization parameter, while the weighting ellipse parameter is held constant

at λ = .1. Then, it is repeated for varying ellipse parameters while holding the

regularization constant at α = 4.5. The resultant error curves are shown in Fig.

2.13.

The curves shown in Fig. 2.13 show that the choice of regularization and

weighting parameters is important in obtaining accurate images. Future research

possibly will explore the automatic calculation and adjustment of these parameters.

It should be noted that the error curves and optimal values presented are dependent

upon the pixel size used in generating the images. The general shape of the curves,

however, is similar for different pixel sizes. In this study, pixel size is held constant

at .5 feet for all experiments.

2.7 Conclusion

Radio tomographic imaging is a new and exciting method for imaging the

attenuation of physical objects with wireless networks operating at RF wavelengths.

This paper discusses a basic model and image reconstruction technique that has

low computational complexity. Experimental results show that RTI is capable of

imaging the RF attenuation caused by humans in dense wireless networks with

inexpensive and standard hardware.

Future research will be important to make RTI realistic in security, rescue,

military, and other commercial applications. First, new models and experiments

must be developed for through-wall imaging. In this case, the shadowing and fading

caused by many objects in the environment may cause the LOS weighting model
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to be inaccurate. New and possibly adaptive weighting models will need to be

investigated and tested.

Wireless protocols, customized hardware, and signal design are also important

for improving RTI. Protocols that are capable of delivering low-latency RSS infor-

mation for large networks will be essential when deploying the technology over large

areas. Antennas that direct the RF energy through an area may reduce the effects

of multipath and increase the effect of human presence on signal strength. Custom

signals, perhaps taking advantage of frequency diversity may improve the quality

of RTI results.

Radio tomographic imaging may provide a low-cost and flexible alternative to

existing technologies like ultra-wideband radar. This would enable many applica-

tions in the areas of security, search and rescue, police/military, and others.

Table 2.1. Gaussian-Mixture Noise Model Parameters Estimated From Measure-
ments

Parameter Value
σ1 0.971
σ2 3.003
p1 0.548
p2 0.452

Table 2.2. Reconstruction parameters used to generate MSE bound surfaces.

Parameter Value Description
∆p .1 Pixel width (m)
λ .007 Width of weighting ellipse in (2.9) (m)
δc 1.3 Pixel correlation constant in (2.20) (m)
σ2
x .1 Pixel variance in (2.20) (dB)2

γ .5483 Bound parameter in (2.19)
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Table 2.3. Image reconstruction parameters

Parameter Value Description
∆p .5 Pixel width (feet)
λ .01 Width of weighting ellipse (feet)
α 5 Regularization parameter
RH 1.3 Human radius for cylindrical model (feet)

Figure 2.1. An illustration of an RTI network. Each node broadcasts to the others,
creating many projections that can be used to reconstruct an image of objects inside
the network area.
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Figure 2.2. An illustration of a single link in an RTI network that travels in a
direct LOS path. The signal is shadowed by objects as it crosses the area of the
network in a particular path. The darkened voxels represent the image areas that
have a nonzero weighting for this particular link.
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Figure 2.4. Quantile-quantile plots comparing measured RSS data with Gaussian
and Mixture distributions.
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Figure 2.5. MSE bound surface plots for a square network.
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Figure 2.10. A comparison of the effect of human obstruction on three links. In
the unobstructed case, the network is vacant from human experimenters. In the
obstructed case, a human stands at coordinate (9,9).
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(a) Cylindrical model image
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Figure 2.11. RTI results for a single human standing at coordinate (9,9). The
person is modeled as a uniformly attenuating cylinder of radius RH = 1.3 feet.
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(a) Cylindrical model image

(b) RTI result

Figure 2.12. RTI results for a two humans standing at coordinates (3,15) and
(18,15). Each person is modeled as a uniformly attenuating cylinder of radius
RH = 1.3 feet.
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CHAPTER 3

REGULARIZATION METHODS FOR

RADIO TOMOGRAPHIC IMAGING

3.1 Abstract

Radio Tomographic Imaging (RTI) is an emerging technology that uses received

signal strength measurements to image the attenuation of objects within a wireless

network area. RTI is by nature an ill-posed inverse problem, therefore, regulariza-

tion techniques must be utilized to obtain accurate images. This paper discusses

some common regularization techniques, including Tikhonov, truncated singular

value decomposition, and total variation, and presents the results of applying them

to RTI.

3.2 Introduction

Radio Tomographic Imaging (RTI) is a method for imaging the attenuation of

physical objects within areas surrounded by wireless radios. RTI uses received

signal strength (RSS) measurements that traverse the network area to reconstruct

an image of where the signals are being attenuated (see Fig. 3.1). Previous work

developed a linear model relating the attenuation field to signal strength measure-

ments, and derived error bounds for resultant images [45], [56]. The formulation for

RTI is by nature an ill-posed inverse problem, and regularization must be applied

to obtain accurate images. This paper focuses on a few common regularization

techniques 1, and presents the results of applying them to RTI.

RTI has applications in emergencies, rescue operations, and security breaches,

since the objects being imaged need not carry an electronic device. RF signals

can travel through obstructions such as walls, trees, and smoke, while optical or

1This chapter first appeared in J. Wilson and N. Patwari, “Regularization Methods for Radio
Tomographic Imaging”, Virginia Tech Wireless Symposium, 2009.
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infrared imaging systems cannot. RF imaging will also work in the dark, where

video cameras will fail. Even for applications where video cameras could work,

privacy concerns may prevent their deployment. An RTI system provides current

images of the location of people and their movements, but cannot be used to identify

a person.

One main application of RTI is to reduce injury for correctional and law enforce-

ment officers; many are injured each year because they lack the ability to detect

and track offenders through building walls [34]. By showing the locations of people

within a building during hostage situations, building fires, or other emergencies,

RTI can help law enforcement and emergency responders to know where they should

focus their attention.

Another application is in automatic monitoring and control in “smart” homes

and buildings. Some building control systems detect motion in a room and use it to

control lighting, heating, air conditioning, and even noise cancellation. RTI systems

can further determine how many people are in a room and where they are located,

providing more precise control.

Generally RTI has application in security and monitoring systems for indoor

and outdoor areas. For example, most existing security systems are trip-wire based

or camera-based. Trip-wire systems detect when a person crosses a boundary, but

do not track the person when they are within the area. Cameras are ineffective

in the dark and have limited view angles. An RTI system could serve both as a

trip-wire, alerting when intruders enter into an area, and tracking where are at all

times while they are inside, regardless of availability of lighting or obstructions.

The reduction in costs for radio frequency integrated circuits (RFICs) and

advances in peer-to-peer data networking have made realistic the use of hundreds

or thousands of simple radio devices in a single RTI deployment. Since the relative

cost of such devices is low, large RTI networks are possible in applications that may

be otherwise impractical.

3.3 Related Work

RF-based imaging has been dominated in the commercial realm by ultra-wideband

(UWB) based through-the-wall (TTW) imaging devices from companies like Time



50

Domain, Cambridge Consultants, and Camero Tech. These companies have devel-

oped products using a phased array of radars that transmit UWB pulses and then

measure echoes to estimate a range and bearing. These devices are accurate close to

the device, but inherently suffer from accuracy and noise issues at long range due to

monostatic radar scattering losses and large bandwidths. Some initial attempts [39]

allow 2-4 of these high-complexity devices to collaborate to improve coverage.

To emphasize the small required bandwidth compared to UWB, some relevant

research is being called “ultra-narrowband” (UNB) radar [40–42]. These systems

propose using narrowband transmitters and receivers deployed around an area to

image the environment within that area. Measurements are phase-synchronous at

the multiple nodes around the area. Such techniques have been applied to detect and

locate objects buried under ground using what is effectively a synthetic aperture

array of ground-penetrating radars [43]. Experiments have been reported which

measure a static environment while moving one transmitter or one receiver [42],

and measure a static object on a rotating table in an anechoic chamber in order

to simulate an array of transmitters and receivers at many different angles [40, 42,

43]. Because in this paper we use low complexity, noncoherent sensors, we can

deploy many sensors and image in real time, enabling the study of tracking moving

objects. We present experimental results with many devices in real-world, cluttered

environments.

Multiple-input-multiple-output (MIMO) radar is another emerging field that

takes advantage of multiple transmitters and receivers to locate objects within a

spatial area [44]. In this framework, signals are transmitted into the area of interest,

objects scatter the signal, and the reflections are measured at each receiver. The

scattering objects create a channel matrix which is comparable to the channel matrix

in traditional MIMO communication theory. RTI differs from MIMO radar in the

same way that it differs from traditional radar. Instead of measuring reflections,

RTI uses the shadowing caused by objects as a basis for image reconstruction.

Recent research has also used measurements of signal strength on 802.11 WiFi

links to detect and locate a person’s location. Experiments in [13] demonstrate the

capability of a detector based on the change in signal strength variance to detect

and to identify which of four positions a person is located. Our approach is not
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based on point-wise detection. Instead, we use tomographic methods to estimate

an image of the change in the attenuation as a function of space.

3.4 Linear Formulation

When wireless nodes communicate, the radio signals pass through the physical

area of the network. Objects within the area absorb, reflect, diffract, or scatter

some of the transmitted power. The goal of an RTI system is to determine an

image vector of dimension RN that describes the amount radio power attenuation

occurring due to physical objects within N voxels of a network region. Since voxels

locations are known, RTI allows one to know where attenuation in a network is

occurring, and therefore, where objects are located.

If K is the number of nodes in the RTI network, then the total number of unique

two-way links is M = K2−K
2

. Any pair of nodes is counted as a link, whether or

not communication actually occurs between them. The signal strength yi(t) of a

particular link i at time t is dependent on:

• Pi: Transmitted power in dB.

• Si(t): Shadowing loss in dB due to objects that attenuate the signal.

• Fi(t): Fading loss in dB that occurs from constructive and destructive inter-

ference of narrow-band signals in multipath environments.

• Li: Static losses in dB due to distance, antenna patterns, device inconsisten-

cies, etc.

• νi(t): Measurement noise and modeling error.

Mathematically, the received signal strength is described as

yi(t) = Pi − Li − Si(t)− Fi(t)− νi(t) (3.1)

The shadowing loss Si(t) can be approximated as a sum of attenuation that

occurs in each voxel. Since the contribution of each voxel to the attenuation of
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a link is different for each link, a weighting is applied. Mathematically, this is

described for a single link as

Si(t) =
N∑
j=1

wijxj(t). (3.2)

where xj(t) is the attenuation occuring in voxel j at time t, and wij is the weighting

of pixel j for link i. If a link does not “cross” a particular voxel, that voxel is

removed by using a weight of zero. For example, Fig. 3.2 is an illustration of how a

direct LOS link might be weighted in a nonscattering environment. In Section 3.4,

an ellipse is used as a simple mechanism to determine LOS weighting.

Imaging only the changing attenuation greatly simplifies the problem, since all

static losses can be removed over time. The change in RSS 4yi from time ta to tb

is

4yi ≡ yi(tb)− yi(ta)

= Si(tb)− Si(ta) + Fi(tb)− Fi(ta)

+νi(tb)− νi(ta), (3.3)

which can be written as

4yi =
N∑
j=1

wij4xj + ni, (3.4)

where the noise is the grouping of fading and measurement noise

ni = Fi(tb)− Fi(ta) + νi(tb)− νi(ta) (3.5)

and

4xj = xj(tb)− xj(ta) (3.6)

is the difference in attenuation at pixel j from time ta to tb.

If all links in the network are considered simultaneously, the system of RSS

equations can be described in matrix form as

4y = W4x + n (3.7)

where

4y = [4y1,4y2, ...,4yM ]T



53

4x = [4x1,4x2, ...,4xN ]T

n = [n1, n2, ..., nM ]T

[W]i,j = wij (3.8)

In summary, 4y is the vector of length M all link difference RSS measurements,

n is a noise vector, and 4x is the attenuation image to be estimated. W is the

weighting matrix of dimension M×N , with each column representing a single voxel,

and each row describing the weighting of each voxel for that particular link. Each

variable is measured in decibels (dB).

To simplify the notation used throughout the rest of this paper, x and y are

used in place of 4x and 4y, respectively.

Normalized Elliptical Weight Model

If knowledge of an environment were available, one could estimate the weights

{wij}j for link i which reflected the spatial extent of multiple paths between trans-

mitter and receiver. Perhaps calibration measurements could aid in estimation of

the linear transformation W. However, with no site-specific information, we require

a statistical model that describes the linear effect of the attenuation field on the

path loss for each link.

An ellipse with foci at each node location can be used as a method for determin-

ing the weighting for each link in the network [45], [56]. If a particular pixel falls

inside the ellipse, it is weighted, while all pixels outside the ellipse have a weight of

zero. Additionally, the weight for each pixel is normalized by the link length [46].

The weighting is described mathematically as

wij =
1√
d

{
1 if dij(1) + dij(2) < d+ λ
0 otherwise

(3.9)

where d is the distance between the two nodes, dij(1) and dij(2) are the distances

from the center of voxel j to the two node locations for link i, and λ is a tunable

parameter describing the width of the ellipse.

3.5 Regularization

Linear models for many physical problems, including RTI, take the form of

y = Wx + n (3.10)
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where y ∈ RM is measured data, W ∈ RM×N is a transfer matrix of the model

parameters x ∈ RN , and n ∈ RM is a measurement noise vector. When estimating

an image from measurement data, it is common to search for a solution that is

optimal in the least-squared-error sense.

xLS = arg min
x
||Wx− y||22 (3.11)

In other words, the least-squares solution minimizes the noise energy required to

fit the measured data to the model. The least-square solution can be obtained by

setting the gradient of (3.11) equal to zero, resulting in

xLS = (WTW)−1WTy (3.12)

which is only valid if W is full-rank. This is not the case in an RTI system.

RTI is an ill-posed inverse problem, meaning that small amounts of noise in

measurement data are amplified to the extent that results are meaningless. This

is due to very small singular values in the transfer matrix W that cause certain

spectral components to grow out of control upon inversion. To see this, W is

replaced by its singular value decomposition (SVD):

W = UΣVT (3.13)

where U and V are unitary matrices, and Σ is a diagonal matrix of singular values.

Plugging (3.13) into (3.12), the least squares solution can be written as

xLS = VΣ−1UTy =
N∑
i=1

1

σi
uTi yvi (3.14)

where ui and vi are the ith columns of U and V, and σi is the ith diagonal element

of Σ. It is evident that when singular values are close to zero, the corresponding

singular basis vectors become very large.

Regularization involves introducing additional information into the mathemat-

ical model to handle these small singular values, which makes the inverse problem

stable. In some methods, a regularization term J(x) is added to the objective

function of the original problem as

freg = f(x) + αJ(x), (3.15)

where α is the weighting parameter. Small values of α lead to solutions that fit the

data, while large values favor the solution that matches prior information.
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Some regularization techniques follow from a Bayesian approach, where a certain

prior distribution is imposed on the model parameters. Other forms of regularization

modify or eliminate small singular values of the transfer matrix. Here, the results of

some common regularization methods applied to RTI are examined and compared.

An overview of regularization and image reconstruction in general can be found

in [54] and [55].

3.5.1 Tikhonov

In Tikhonov regularization, a regularization term is included in the objective

function.

f(x) =
1

2
||Wx− y||2 + α||Qx||2 (3.16)

where Q is the Tikhonov matrix that enforces a solution with certain desired prop-

erties. Taking the derivative of (3.16) and setting to zero results in the Tikhonov

solution:

xTIK = (WTW + αQTQ)−1WTy. (3.17)

Tikhonov regularization provides a simple framework for incorporating desired

characteristics into the RTI reconstruction. If smooth images are desired, a differ-

ence matrix approximating the derivative of the image can be used in the Tikhonov

matrix Q. If the prior image is known to have a particular Gaussian covariance

structure, the root-inverse covariance matrix C−1/2
x can be used.

One major strength of Tikhonov regularization lies in the fact that the solution

is simply a linear projection of the measurement data. Since the projection does not

depend on instantaneous measurements, it can be precalculated, and then applied

for various measurements for fast image reconstruction. This is very appealing for

realtime RTI systems that require frequent image updates [45], [56].

PTIK = (WTW + αQTQ)−1WT (3.18)

xTIK = PTIKy (3.19)

3.5.2 Truncated Singular Value Decomposition (TSVD)

Another common form of regularization called trucated singular value decomposi-

tion (TSVD) is achieved by removing small singular values from the transfer matrix
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W. In this method, only the largest k singular values are kept in the reconstruction

shown in (3.14),

xTSV D =
k<N∑
i=1

1

σi
uTi yvi = VkΣ

−1
k UT

k y (3.20)

where

Uk = [u1,u2, ...,uk] (3.21)

Vk = [v1,v2, ...,vk] (3.22)

Σ−1
k = diag

(
σ−1

1 , σ−1
2 , ..., σ−1

k

)
. (3.23)

The TSVD technique is a reduction of the dimensionality of the true solution.

It can be thought of as a projection of the solution onto a subspace spanned by the

remaining singular vectors. Those singular vectors are dependent on the device

itself, or in RTI, the node locations and signal propagation model. Since the

projection is based on the device itself, TSVD lacks the ability for incorporation of

known or desired image properties into the results.

Like Tikhonov regularization, a tranform matrix can be pre-calculated and

applied to data for fast image reconstruction in realtime applications.

PTSV D = VkΣ
−1
k UT

k (3.24)

xTSV D = PTSV Dy (3.25)

3.5.3 Total Variation

Total Variation (TV) is a form of nonlinear regularization that penalizes changes

in the solution. Mathematically, total variation takes the form

f(x) =
1

2
||Wx− y||2 + αTV (x) (3.26)

where

TV (x) =
∑
i

|∇x|i, (3.27)

and |∇x|i is the ith element of the gradient of x. In other words, the integration of

gradient magnitude is minimized.
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It is not possible to calculate the gradient and Hessian of TV (x), which is

necessary for most numerical optimization algorithms to converge reliably and

quickly. To address this problem, a differentiable function is used as an approximate:

TV (x) '
∑
i

√
||∇x||2i + β2. (3.28)

This approximation is based on

|a| =
√
a2 '

√
a2 + β2 (3.29)

for small β, which removes the discontinuity at a = 0. The objective function for

total variation becomes

f(x) =
1

2
||Wx− y||2 + α

∑
i

√
||∇x||2i + β2. (3.30)

Using this approximation, the gradient and Hessian information is easily obtained

and utilized in a numerical optimization procedure. The parameter β is tunable,

and relates to the “sharpness” of the images generated by the TV regularization.

Total variation penalizes slow changes in an image, and therefore can lead to images

that maintain sharp transitions if parameters are set accordingly.

3.6 Results

This section presents images that are reconstructed using the regularization

techniques described in Section 3.5. For each image, the same RTI measurement

data y and transfer matrix W were used, and Table 3.1 lists the model and

calibration parameters.

The experiment is performed in an area with furniture, walls, moving people,

and other building structures to provide a rich multipath environment. The wireless

network is comprised of twenty eight “Telosb” wireless nodes by Crossbow, and

each node operates on the IEEE 802.15.4 specification. A token passing protocol is

implemented so that node transmissions do not collide.

The nodes are set up in a square network with a length of 4.2 meters on each

side, establishing a network image area of 17.6 square meters (196 square feet).

Each side of the square contains eight nodes separated by approximately .6 meters

(2 feet), as depicted in Fig. 3.3. The nodes are placed on stands approximately
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four feet off the ground so that line-of-sight paths travel through humans at torso

level.

To image the change in attenuation, RSS measurements of each link are taken at

time t = ta as described in Section 3.4. During this calibration period, the network

area is vacant from moving objects. The signal strength from each link is measured

Nc times and is averaged over the entire calibration period. After calibration,

when the RTI network is in use, all instantaneous measurements are taken as

the difference from the calibration measurements. This provides the difference

measurement vector 4y in (3.7), which is required to image motion within the

network. In other words, any attenuation that was not part of the calibration at

time t = ta is imaged.

It should be noted that only one image result is provided for each regularization

method. Different regularization parameters will yield different results, but the

parameters chosen in this section provided good results in terms of the ability to

distinguish the location of changed attenuation. Other parameters were not able to

produce significantly better image results in our experiments.

3.6.1 Tikhonov

A difference matrix approximating the derivative operator is applied as the

Tikhonov matrix Q. By minimizing the energy found within the image derivative,

noise spikes are supressed and a smooth image is produced.

Since the image is two dimensional, the regularization should include the deriva-

tives in both the vertical and horizontal directions. The matrix DX is the difference

operator for the horizontal direction, and DY is the difference operator for the

verticle direction. The regularized function can be written in this case as

f(x) =
1

2
||Wx− y||2 + α(||DXx||2 + ||DY x||2), (3.31)

which results in the solution

xT ik = (WTW + α(DT
XDX + DT

Y DY ))−1WTy. (3.32)

When the derivative is used as the Tikhonov matrix, this is also known as H1

regularization.
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As seen in Fig. 3.7 and Fig. 3.7, H1 regularization results in very smooth

RTI results for α = 2. The difference operators act as a low-pass filter, smoothing

the noise and blurring any sharp changes in attenuation. The smoothness can be

increased or decreased by choosing α appropriately.

3.6.2 Trucated Singular Value Decomposition (TSVD)

As described in Section 3.5, TSVD regularization removes spectral components

of W that correspond to low singular values. This means that all information in

the spectral components that are removed are entirely lost from the solution.

The limitations of TSVD regularization when applied to RTI are evident in Fig.

3.7 and Fig. 3.7. The image is rough due to the high frequency components that are

included in the reconstruction, and yet contrast remains low when the threshold is

set to τ = 5.6. This makes it difficult for a human or image processing algorithm to

determine where objects are located. Other thresholds did not significantly improve

the image.

3.6.3 Total Variation

As explained in Section 3.6.1, the gradient of a two-dimensional image is ap-

proximated by two difference matrices DX and DY . This leads to the regularization

function for total variation

TV (x) '
∑
i

√
||DY x||2i + ||DXx||2i + β. (3.33)

The minimum of the total variation least-squares problem is found using a numerical

optimization algorithm. In this experiment, the BFGS algorithm is used [57].

The total variation results shown in Fig. 3.7 and Fig. 3.7 for α = .35 and

β = .08 demonstrate the capability of TV regularization in maintaining sharpness

of RTI images. The combination of sharp edge definition and low noise make total

variation appealing for RTI, but the computational complexity of the numerical

optimization is more than Tikhonov or TSVD regularization. This is due to the

fact that the solution must be obtained using a numerical optimization algorithm

instead of a simple matrix multiplication, as is the case with Tikhonov and TSVD.



60

3.7 Conclusion

Radio tomographic imaging is an ill-posed inverse problem. Since many different

attenuation fields can lead to the same noisy measurement data, no unique solution

to the least-squares formulation exists. The problem is made stable by incorporating

additional information about the solution into the mathematical framework.

Tikhonov regularization is appealing for RTI systems due to the flexibility to

incorporate desired image characteristics into the solution. It follows naturally from

a Baysian approach where the statistical distribution of the image is assumed or

known. Since the Tikhonov solution is a linear transformation of the measurement

data, it is useful for realtime RTI systems where fast reconstruction of images is

needed.

Truncated singular value decomposition is a natural form of regularization that

does not require prior information about the solution. This can be viewed as both

a strength and a weakness, since it is often helpful to incorporate desired image

properties. Our experimental results indicate that TSVD-RTI images are noiser

than the other regularization methods, and lack the contrast needed to accurately

distinguish the location of moving objects.

Total Variation is useful when the preservation of sharp edges in the image is

desired. Experimental results show that TV-RTI images contain a large amount of

contrast without much noise, making it easier to distinguish the location of objects.

It requires two regularization parameters, however, and is more computationally

expensive than the other methods presented in this paper.

The results presented in this paper demonstrate that regularization plays an

import role in tracking the location of moving objects with radio tomographic

imaging. While this paper presents some common forms of regularization, many

other regularization and image reconstruction techniques could be applied to RTI

in future work.
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Table 3.1. Calibration and model parameters

Parameter Value Description
N 28 Number of nodes
Nc 2000 Number of calibration frames
∆p .17 Pixel width (m)
λ .01 Width of weighting ellipse in (3.9) (m)

Figure 3.1. An illustration of an RTI network. Each node broadcasts to the others,
creating many projections that can be used to reconstruct an image of objects inside
the network area.
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Figure 3.2. An illustration of a single link in an RTI network that travels in a
direct LOS path. The signal is shadowed by objects as it crosses the area of the
network in a particular path. The darkened voxels represent the image areas that
have a non-zero weighting for this particular link.
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Figure 3.3. The RTI geometry and human locations for the images found in
Section 3.6. Twenty-eight nodes are placed in a square perimeter, with two humans
standing inside the area at coordinates (3,1) and (1,3).
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Figure 3.4. RTI results using H1 regularization with parameter α = 2 using
forward difference matrices.
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Figure 3.6. RTI results using truncated singular value regularization. Here, any
singular value below the threshold τ = 5.6 is truncated.
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Figure 3.7. RTI results using truncated singular value regularization. Here, any
singular value below the threshold τ = 5.6 is truncated.
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Figure 3.8. RTI results using total variation regularization with parameter α = .35
and β = .08.
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CHAPTER 4

THROUGH-WALL MOTION TRACKING

USING VARIANCE-BASED RADIO

TOMOGRAPHY NETWORKS

4.1 Abstract

This paper presents a new method for imaging, localizing, and tracking motion

behind walls in real-time. The method takes advantage of the motion-induced

variance of received signal strength measurements made in a wireless peer-to-peer

network. Using a multipath channel model, we show that the signal strength on a

wireless link is largely dependent on the power contained in multipath components

that travel through space containing moving objects. A statistical model relating

variance to spatial locations of movement is presented and used as a framework

for the estimation of a motion image. From the motion image, the Kalman filter

is applied to recursively track the coordinates of a moving target. Experimental

results for a 34-node through-wall imaging and tracking system over a 780 square

foot area are presented.

4.2 Introduction

This paper explores a method for tracking the location of a person or object

behind walls, without the need for an electronic device to be attached to the target.

The technology is an extension of “radio tomographic imaging” [15], which is so-

called because of its analogy to medical tomographic imaging methods. We call

this extension variance-based radio tomographic imaging 1 (VRTI), since it uses the

signal strength variance caused by moving objects within a wireless network. The

general field of locating people or objects when they do not carry a device is also

1This chapter first appeared in J. Wilson and N. Patwari, “See Through Walls: Motion Tracking
Using Variance-Based Radio Tomography Networks“, IEEE Transactions on Mobile Computing,
2010, and is reprinted with permission.
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called “device-free passive localization” [13] in contrast to technologies like active

radio frequency identification (RFID) which only locate objects that carry a radio

transmitter.

For context-aware systems, a user’s context includes the locations of people

in the nearby environment [58]. Typically, location aware systems require the

participation of people who must wear tags to be located and identified [59]. We

envision applications in which requiring participation is not possible. For example,

emergency responders, miltary forces, or police arrive at a scene where entry into

a building is potentially dangerous. They deploy radio sensors around (and poten-

tially on top of) the building area, either by throwing or launching them, or dropping

them while moving around the building. The nodes immediately form a network

and self-localize, perhaps using information about the size and shape of the building

from a database (e.g., Google maps) and some known-location coordinates (e.g.,

using GPS). Then, nodes begin to transmit, making signal strength measurements

on links which cross the building or area of interest. The RSS measurements of each

link are transmitted back to a base station and used to estimate the positions of

moving people and objects within the building. Based on these inputs, the context

aware system can aid decisions about how to focus responders’ efforts.

Radio tomography provides life-saving benefits for emergency responders, po-

lice, and military personnel arriving at potentially dangerous situations. Many

correctional and law enforcement officers are injured each year because they lack

the ability to detect and track offenders through building walls [34]. By showing

the locations of people within a building during hostage situations, building fires,

or other emergencies, radio tomography can help law enforcement and emergency

responders to know where they should focus their attention.

This paper explores the use of radio tomography in highly obstructed areas for

the purpose of tracking moving objects through walls. First, a review of previous

work and related research is summarized in Section 4.3. In Section 4.4, we address

a fundamentally different method for the use of RSS measurements which we call

variance-based radio tomography (VRTI). When a moving object affects the ampli-

tude or phase of one or more multipath components over time, the phasor sum of all

multipath at the receiver experiences changes, and higher RSS variance is observed.



72

The amount of RSS variance relates to the physical location of motion, and an

image representing motion is estimated using measurements from many links in the

wireless network.

We briefly review the Kalman filter and apply it in Section 4.5 to track the loca-

tion of a moving object or person. In Section 4.6, experimental results demonstrate

the use of RSS variance to locate a moving object on the inside of a building. This

section also quantifies the accuracy of localization by comparing known movement

paths with those estimated by the VRTI tracking system. We show that the VRTI

system can track the location of an experimenter behind walls with approximately

two feet average error for this experiment.

Finally, Section 4.7 discusses some possibilities for future research. Advances in

wireless protocols, antenna design, and physical layer modeling will bring improve-

ments to VRTI through-wall tracking.

4.3 Related Research

Previous work shows that changes in link path losses can be used to accurately

estimate an image of the attenuation field, that is, a spatial plot of attenuation per

unit area [15]. Experimental tests show that in an unobstructed area surrounded

by a network of nodes, the estimated image displayed the positions of people in the

area.

Indoor radio channel characterization research demonstrates that objects moving

near wireless communication links cause variance in RSS measurements [47]. This

knowledge has been applied to detect and characterize motion of network nodes

and moving objects in the network environment [10]. Polarization techniques have

also been used to detect motion [60]. These studies focus mostly on detection and

velocity characterization of movement, but do not attempt to localize the movement

as the work presented in this paper does.

Youssef, Mah, and Agrawala [13] demonstrated that variance of RSS on a

number of WiFi links in an indoor WLAN can be used to (1) detect if motion

is occuring within a wireless network, and (2) localize the moving object based on

a manually trained lookup. In many situations, however, manual training is not

possible since it can take a significant amount of time and access to the area being
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tracked is restricted.

Real-time location systems (RTLS) are based on a technology that uses elec-

tronic tags for locating objects. For logistics purposes in large facilities, commercial

real-time location systems are deployed by installing infrastructure in the building

and attaching active radio frequency identificaiton (RFID) tags to each object to be

tracked. RTLS systems are not useful in most emergency operations, however, since

they require setup inside of a building prior to system use. Further, RTLS systems

cannot locate people or objects which do not have an RFID tag. In emergencies, an

operation cannot rely on an adversary wearing a tag to be located. Thus, tag-based

localization methods are insufficient for most emergency and security applications.

An alternate tag-free localization technology is ultra-wideband (UWB) through-

wall imaging (TWI) (also called through-the-wall surveillance). In radar-based

TWI, a wideband phased array steers a beam across space and measures the delay of

the reflection response, estimating a bearing and distance to each target. Through-

wall radar imaging has garnered significant interest in recent years [61–65], for both

static imaging and motion detection. Commercial products include Cambridge

Consultants’ Prism 200 [37] and Camero Tech’s Xaver800 [38], and are prohibitively

expensive for most applications, on the order of US $100,000 per unit. These

products are accurate close to the device, but inherently suffer from accuracy and

noise issues at long range due to monostatic radar losses. In free space at distance

d, radar systems measure power proportional to 1/d4, in comparison to 1/d2 for

radio transmission systems.

Radio tomography takes a fundamentally different approach from traditional

TWI systems by using large networks of sensors. While initial attempts [39] have

allowed 2-4 high-complexity devices to collaborate in TWI, our research investigates

the use of tens or hundreds of collaborating nodes to simultaneously image a larger

area than possible with a single through-wall radar. RTI’s imaging capability

increases as O (N2) for N sensors, thus large networks, rather than highly capable

nodes, lead to improved imaging and tracking capabilities.

Multistatic radar research has also developed technologies called multiple-input

multiple-output (MIMO) radar. These technologies also use distributed devices,

perhaps without phase-synchronization, in order to measure radar scattering [44].
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The use of many distributed antennas is a type of spatial diversity for a radar

system which can then avoid nulls in the radar cross-section (RCS) of a scattering

object as a function of scattering angle [66].

MIMO radar is a complementary technology to radio tomography. While MIMO

radar measures scattering of the transmitted signal by the object of interest, ra-

dio tomography methods are based on measurements of transmission through a

medium. Integration of the two modalities is beyond the scope of this paper, but

is perhaps a promising direction for future research.

4.4 Variance-Based Radio Tomographic Imaging

In this section, we introduce and justify a model which relates motion in spatial

voxels to the variance of signal strength measured on the links of a wireless network.

In particular, we justify the assumption of a linear model when motion is sparse,

and describe the limits on the validity of such a model.

4.4.1 Measurement Model

The goal of a VRTI system is to use a vector s of RSS variance measurements

on M links in a wireless network to determine an image vector x that describes the

presence of motion occuring within N voxels of a physical space. We first describe

the image vector, then specifically define RSS, and discuss RSS variance.

The image vector x is a representation of motion occurring within each spatial

voxel of the network area, with jth element given by

x(j) =

{
1 if motion occurs in voxel j
0 otherwise

(4.1)

What we call the “received signal strength” (RSS) is actually a measure of the

received power in decibels. In a multipath environment, a wireless signal travels

along many paths from transmitter to receiver. Each path has associated with it

an amplitude and phase, and the received signal is a summation of each incoming

multipath component. The complex baseband voltage for a continuous-wave (CW)

signal measured at a receiver is expressed as [67],

Ṽ = ν +
L∑
i=1

Vi exp (jΦi) , (4.2)
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where ν is the additive noise, Vi is the magnitude and Φi is the phase of the ith

multipath component (wave) impinging on the receiver antenna. The received power

is thus ‖Ṽ ‖2, and so the RSS, denoted RdB, is given as RdB = 10 log10 ‖Ṽ ‖2.

The RSS variance vector s contains for each link a measure of the variance of

RdB. In Section 4.4.2, we show how this variance has a linear relationship with the

total power in affected multipath. Then in Section 4.4.3, we argue that this total

affected power has a linear relationship with x, for the case of sparse motion. In

sum, we justify the following linear model. We approximate Var [RdB] as a linear

combination of the movement occuring in each voxel, weighted by the amount of

variance that motion in that particular voxel causes on the link’s RSS,

Var [RdB] =
∑
j

wjx(j) + n, (4.3)

where n is measurement noise and modeling error, and wj is the variance caused by

movement in voxel j. For all links, we have

s = Wx + n (4.4)

where W is an M × N matrix representing the variance weighting for each pixel

and link, and n is a M × 1 noise vector.

4.4.2 Variance and Total Affected Power

In this section, we argue that the RSS variance, Var [RdB], and the total affected

power have a linear relationship. First, we define affected power. We classify each

multipath as either affected or static: A multipath i is described as affected if its

amplitude and/or phase change randomly as a result of the current position of

people and/or objects in the channel, or static if it is not. We denote A(x) to be

the indices of the affected multipath given the motion described in x. Then we

define the total affected power, TAP (x), as

TAP (x) =
∑
i∈A(x)

|Vi|2. (4.5)

We show that TAP has a linear relationship with Var [RdB] for a wide range of

Var [RdB].
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Rearranging the multipath in (4.2) into affected and static contributions,

Ṽ = ν +
∑
i/∈A(x)

Vi exp (jΦi) +
∑
i∈A(x)

Vi exp (jΦi) . (4.6)

The sum of static multipath do not change, and thus we can rewrite (4.6) as

Ṽ = V̄ exp
(
jΦ̄
)

+
∑
i∈A(x)

Vi exp (jΦi) + ν, (4.7)

where V̄ and Φ̄ are the magnitude and phase angle of
∑

i/∈A(x) Vi exp (jΦi), respec-

tively. We consider the Vi and Φi for affected multipath to be random.

It is well known in the wireless communications literature [68,69] that |Ṽ |, as it

is given in (4.7), is well represented as a Ricean random variable. The voltage V̄ ejΦ̄

is analogous to the specular signal in a Ricean channel, while the remaining terms

are the diffuse signal components. The K factor of the Ricean distribution for |Ṽ |

is defined as,

K =
V̄ 2

2σ2
=

V̄ 2

2[σ2
ν + TAP (x)]

=
1

2

[
σ2
ν

V̄ 2
+
TAP (x)

V̄ 2

]−1

(4.8)

where σ2 = σ2
ν + TAP (x) is the power in the affected power and noise, and TAP (x)

is defined in (4.5). We refer to TAP (x)/V̄ 2 as the normalized total affected power

(normalized TAP).

Moreover, we have a known relationship between the variance of RSS and K.

Since RdB = 10 log10 ‖Ṽ ‖2 and |Ṽ | is Ricean, RdB has the log-Ricean pdf. The

variance of RdB is calculated numerically as a function of K. Note that for constant

K, the scale of σ2 and V̄ 2 do not change Var [RdB]. Combining the numerically

calculated relationship between Var [RdB] and K, and (4.8), we plot in Figure 4.1

the functional dependence of Var [RdB] on normalized TAP.

As seen in Figure 4.1, the variance of RSS is linearly related to normalized TAP

for normalized TAP less than 0.25. That is, when the total power affected by a

person’s motion is less than 25% of the total static power in the link, the variance

is linear with normalized TAP. For through-wall imaging, the power affected by the

motion inside of the building is typically low, because multipath which penetrate
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two external walls to enter and exit the building are low in power compared to

multipath which diffract around the building’s exterior.

For high normalized TAP, the variance strictly increases, so motion can be

detected using VRTI, but the nonlinearities make the linear model, and thus the pro-

posed image estimator, less accurate. In this case, we note that moving objects are

also likely to cause a reduction in the mean received power, because they typically

cause some shadowing of the affected multipath. As a result, shadowing-based RTI

may be better approach than variance-based RTI when most of the multipath power

is affected, that is, when all links are LOS, but not in through-wall deployments.

In short, RSS variance has a linear relationship with total affected power, over

the most important range of normalized TAP for purposes of variance-based RTI.

4.4.3 Total Affected Power and Motion

In this section, we argue that for sparse motion, the total affected power is

approximately linear in x. Assume that multipath component i travels through a

subset of space Si. This subset Si might be some narrow volume around the line

tracing its path from the transmitter to receiver, for example. We assume that a

path i is affected due to object motion in voxel j centered at zj if zj ∈ Si, then

path i is affected, i.e.,

A(x) = {i : x(j) > 0 ∩ zj ∈ Si, for some j}.

Note that x(j) is non-negative as given in (4.1). Now consider two motion images,

x1 and x2. The affected multipath in the sum motion image, x = x1 + x2, is given

by

A(x) = {i : x1(j) + x2(j) > 0 ∩ zj ∈ Si, for some j}

= A(x1) ∪ A(x2). (4.9)

Then the total affected power as defined in (4.5) due to the sum of the motion

vectors is

TAP (x) =
∑

i∈A(x1)∪A(x2)

|Vi|2 =
∑

i∈A(x1)

|Vi|2 +
∑

i∈A(x2)

|Vi|2 −
∑

i∈A(x1)∩A(x2)

|Vi|2 (4.10)

This intersection A(x1) ∩ A(x2) is the set of multipath affected by both motion

images x1 and x2.
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Now, let x1 and x2 be sparse motion images with motion only in voxels j1 and

j2, respectively. Then

A(x1) ∩ A(x2) = {i : zj1 ∈ Si ∩ zj2 ∈ Si},

that is, multipath which cross through both voxels j1 and j2. We argue that for

close voxels, i.e., ‖zj1 − zj2‖ small, there may be multipath which cross through

both voxels. However, for voxels j1 and j2 far apart, there will be relatively few

multipath components which cross through both voxels, compared to the multipath

which cross through only one. In this latter case, (4.10) becomes,

TAP (x1 + x2) ≈
∑

i∈A(x1)

|Vi|2 +
∑

i∈A(x2)

|Vi|2. (4.11)

In general, when the non-zero motion voxels in x1 and x2 are relatively distant,

the approximation in (4.11) is valid. This model, in combination with the linear-

ity between TAP (x) and the RSS variance, justifies approximating s as a linear

transformation of x as given in (4.4).

4.4.4 Elliptical Weight Model

If knowledge of an environment were available, one could estimate the variance

weights wj for each link. Perhaps calibration measurements or ray tracing tech-

niques could aid in estimation of the linear transformation W. For time-critical

emergency operations, one cannot expect to obtain floor plans and interior arrange-

ments of the building. With no site-specific information, we require a statistical

model that describes the contribution of motion in each pixel to a link’s variance.

One such statistical model has been described for link shadowing is the nor-

malized elliptical model [15, 46]. Consider an ellipsoid with foci at the transmitter

and receiver locations. The excess path length of multipath contained within this

ellipsoid must be less than or equal to a constant. Excess path length is defined

as the path length of the multipath minus the path length of the line-of-sight

component. As described in previous sections, the variance of a link’s RSS is

highly related to the power contained in the mulipath components affected by

motion. With this reasoning, we make the assumption that motion occuring on

voxels within an ellipsoid will contribute significantly to a link’s RSS variance,
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while motion in voxels outside will not. This is a binary quantization, but provides

a simple, single-parameter spatial model. We note that measurements in [11, 18]

also show elliptical-shaped areas in which motion causes high variance.

The variance weight for each voxel decreases as the distance between two nodes

increases. As the link gets longer, the amount of power in the changing multipath

components is decreased along with the link’s RSS variance. Many models for dis-

tance weighting could be applied for images with varying qualities, but our empirical

tests have indicated that dividing the variance weighting by the root of the link

distance generates images that contain a balance of contrast and noise-reduction.

The weighting is described mathematically as

[W ]l,j =
1√
dl

{
ψ if dlj(1) + dlj(2) < dl + λ
0 otherwise

(4.12)

where dl is the distance between the two nodes, dlj(1) and dlj(2) are the distances

from the center of voxel j to the two respective node locations on link l, ψ is a

constant scaling factor used to normalize the image, and λ is a tunable parameter

describing the excess path length included in the ellipsoid.

The normalized ellipse weight model is certainly an approximation, but experi-

mental data has shown its effectiveness for VRTI, as will be shown in Section 4.6.

Future work will use theoretical arguments and extensive measurements to refine

the statistical models of RSS variance as a function of location.

4.4.5 Process Sampling, Buffering, and Variance Estimation

In this paper, we assume that the link signal strength process is sampled at a

constant time period Ts, resulting in the discrete-time signal for link l:

Rl[k] = RdBl
(kTs). (4.13)

where RdBl
(kTs) is the RSS measurement in dB at time kTs for link l. We also

assume that the process remains wide-sense stationary for a short period of time.

These assumptions allow the recent variance of the process to be estimated from a

history buffer of the previous NB samples for each link. The short-term unbiased

sample variance ŝl for each link l is computed by

ŝl =
1

NB − 1

NB−1∑
p=0

(Rl[k − p]− R̄l[k])2 (4.14)
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where

R̄l[k] =
1

NB

NB−1∑
p=0

Rl[k − p] (4.15)

is the mean of the signal strength buffer. The sample variance vector for all links

in the wireless network is

ŝ = [ŝ1, ŝ2, ..., ŝM ]T (4.16)

4.4.6 Regularization and Image Estimation

The linear model (4.4) provides a mathematical framework relating movement

in space to a link’s RSS variance. The model is an ill-posed inverse problem that

is highly sensitive to measurement and modeling noise. No unique solution to the

least-squares formulation exists, and regularization must be applied to obtain a

solution. In this paper, Tikhonov regularization is used, but other common forms

of regularization as they apply to RTI are discussed and evaluated in [16].

In Tikhonov least-squares regularization, the optimization for image estimation

is formulated as

xT ik = arg min
x

1

2
||Wx− ŝ||2 + α||Qx||2 (4.17)

where Q is the Tikhonov matrix that enforces a solution with certain desired

properties, and α is a tunable regularization parameter. Taking the derivative

of (4.17) and setting to zero results in the solution:

xT ik = (WTW + αQTQ)−1WT s. (4.18)

Tikhonov regularization provides a simple framework for incorporating desired

characteristics into the VRTI reconstruction. If smooth images are desired, a

difference matrix approximating the derivative of the image can be used as the

Tikhonov matrix. If the image is two dimensional, the regularization should include

the difference operations in both the vertical and horizontal directions. Let Dx

be the difference operator for the horizontal direction, and Dy be the difference

operator for the verticle direction. Then the Tikhonov regularized least-squares

solution is

xT ik = Πŝ. (4.19)
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Π = [WTW + α(DT
xDx + DT

y Dy)]
−1WT

In summary, the variance of each link is estimated from a recent history of RSS

samples and stored in vector ŝ. The regularized image solution is simply a linear

transformation Π of this vector ŝ.

4.5 Kalman Filter Tracking

A radio tomography image in itself does not provide the location coordinates of

moving objects. The Kalman filter provides a framework to track such coordinate

estimates. Kalman filters are used extensively to estimate the hidden state of a

system when measurements of that state are linear and have been corrupted by

Gaussian noise. It takes into account the current and previous measurements to

generate a more accurate estimate of the system’s state than a single instantaneous

measurement can. A Kalman filter also has the desirable characteristic that the

estimate can be updated with each new measurement, without the need to perform

batch measurement collection and processing.

In a location tracking system, such as the one described in this paper, the state

to be estimated is made up of the physical coordinates of the object being tracked.

The Kalman filter exploits the fact that an object moves through space at a limited

speed, smoothing the effects of noise and preventing the tracking from “jumping.”

In this sense, the filter can be viewed as a form of regularization.

In this work, the objects being tracked are assumed to move as a Brownian

process, and measurement noise is assumed to be Gaussian. Although these as-

sumptions are not entirely accurate, the Kalman filter is still effective for tracking

the location of movement. The following variables are used in the tracking filter.

• υ2
m: the variance of the object’s motion process, indicating how fast the object

is capable of moving. Larger values enable the filter to track faster moving

objects, but also make the estimate noisier.

• υ2
n: the variance of the measurement noise. Larger values will cause the filter

to “trust” the statistical predictions over the instantaneous measurements.

With these assumptions and variables, the Kalman filter algorithm for tracking

movements in an RTI system can be described by the following steps.
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1. Initialize c = (0, 0) and P = I2, where I2 is the 2x2 identity matrix.

2. Set P̄ = P + υ2
mI2.

3. Set G = P̄(P̄ + υ2
nI2)−1.

4. Take measurement z equal to the coordinates of the maximum of the VRTI

image.

5. Set c = c + G(z− c).

6. Set P = (I2 −G)P̄.

7. Jump back to step 2 and repeat.

For information on the derivation of this algorithm, there are many textbooks on

the topic of Kalman filtering [70], [71].

4.6 Experiment

4.6.1 Description and Layout

This section presents the results of a through-wall tracking experiment utilizing

variance-based RTI. A 34-node peer-to-peer network was deployed in an area around

a four-wall portion of a typical home. Three of the walls are external, and one is

located on the interior of the home. The interior wall is made of brick and was an

external wall prior to remodeling of the home. Objects like furniture, appliances,

and window screens were not removed from the home to ensure that the tracking

was functional in a natural environment.

The nodes were placed in a rectangular perimeter, as depicted in Figure 4.2. It

was neither possible, nor necessary, to place the nodes in a uniform spacing due to

building and property obstacles. Eight of the nodes were placed on the inside of the

building, but on the other side of the brick interior wall. Each radio was placed on

a stand to keep them on the same two-dimensional plane at approximately human

torso level.

The nodes utilize the IEEE 802.15.4 protocol, and transmit in the 2.4GHz

frequency band. To avoid network transmission collisions, a simple token passing

protocol is used. Each node is assigned an ID number and programmed with a



83

known order of transmission. When a node transmits, each node that receives the

transmission examines the sender identification number. The receiving nodes check

to see if it is their turn to transmit, and if not, they wait for the next node to

transmit. If the next node does not transmit, or the packet is corrupted, a timeout

causes each receiver to move to the next node in the schedule so that the cycle is

not halted. A base-station node that receives all broadcasts is used to gather signal

strength information and save it to a laptop computer for real-time processing.

In all the experimental results in this section, the same set of image reconstruc-

tion parameters is used, as shown in Table 4.1.

Shadowing-based RTI [15] uses the difference in average signal strength to image

the attenuation caused by objects in a wireless network. In through-wall imaging,

however, the effect of dense walls prevent many of the links from experiencing

significant path loss due to a single human obstructing the link. In many cases,

multipath fading can cause the signal strength to increase when a human obstructs

a link.

Variance can be used as an indicator of motion, regardless of the average path

loss that occurs due to dense walls and stationary objects within the network. An

example of how through-wall links are affected by obstruction is provided in Figure

4.3. When a stationary object obstructs the link in a through-wall environment,

the change in mean RSS is unpredictable. For example, in Fig 4.3, one link

appears unaffected by the obstruction, while another link’s RSS average is raised by

approximately 4 dB. When an object moves, the variance of the obstructed link’s

RSS provides a more reliable metric, as seen in the figure.

4.6.2 Image Results

To further demonstrate the advantage of using VRTI over shadowing-based RTI

for through-wall motion imaging, two images are presented in Fig. 4.8 and Fig.

4.8. In both images, a human moves randomly, taking small steps around and

through the space directly above the coordinate. This is necessary since VRTI

images movement, not static changes in attenuation.

Inspection of the figures shows that VRTI is capable of imaging areas of motion

behind walls, while conventional RTI fails to image the change in attenuation. These
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results are typical of other location coordinates tested during the experiment.

Tracking multiple moving targets through dense walls is a challenging and open

topic for future research. When multiple people move within a surveillance area,

the accuracy of a VRTI image is dependent on the separation of the targets. Ad-

ditionally, when multiple walls or walls constructed with dense materials surround

the surveillance area, the amount of power that radiates into the area is reduced.

Systems attempting to track movement in these difficult circumstances may require

low radio frequencies and directional antennas to achieve usable results.

4.6.3 Path Tracking

In this section, we test our tracking system with experimental data. An experi-

menter moves at a typical walking pace on a pre-defined path at a constant speed.

A metronome and uniformly placed markings on the floor help the experimenter to

take constant-sized steps at a regular time interval. The experimenter’s actual

location is interpolated using the start and stop time, and the known marker

positions.

The location of the experimenter is estimated using the Kalman filter described

in Section 4.5 with imaging parameters presented in Table 4.1. Figs. 4.8, 4.8, 4.8

and 4.8 plot both the known and estimated location coordinates over time when

using two different mobility parameters.

The effect of the tracking parameters is visually evident in the figures. When

the mobility parameter is set high, the filter is able to track the human with less lag,

but the variance of the estimate also increases. When the mobility parameter is set

low, the tracking coordinate severely lags behind the moving object, but estimates

a smoother path of motion.

To quantify the accuracy of the location coordinate estimation, the average error

is defined as

ε =
1

L

L∑
k=1

√
(zx[k]− px[k])2 + (zy[k]− py[k])2 (4.20)

where L is the total number of samples, zx[k] and zy[k] are the estimated x and y

coordinates at sample time k, and px[k] and py[k] are the actual known coordinates.

The average tracking error for υ2
m = .01 and υ2

n = 5 is 2.07 feet.
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It should be noted that a Kalman filter can be designed to estimate the target’s

velocity, as well as position. This would enable the filter to follow a non-accelerating

moving object without a lag. However, when a target changes direction or speed,

some transient error would occur while the filter converges to the new speed and

direction.

4.6.4 Spot Movement

When estimating the location of a moving object, some amount of tracking lag

must occur due to the time it takes to collect measurements from the network and

the processing delays. The lag is also dependent on the mobility parameter υm used

for tracking.

To study the tracking sytem without the effects of time delay, the estimated

and known location of a moving human are compared at 20 different coordinates.

At each location, the experimenter moves randomly, taking small steps around and

through the space directly above the known coordinate. The VRTI tracking system

estimates the location of movement and we average the estimates over a duration of

ten seconds for each coordinate. The average estimated coordinate is plotted with

the known location to generate the results presented in Figure 4.10.

To quantify the accuracy in this test, the error for each of the 20 known coordi-

nates is averaged.

ζ =
1

20

20∑
p=1

εp (4.21)

where εp is the average error defined by (4.20) for each position p. The error for

this test with υ2
m = .01 and υ2

n = 5 is 1.46 feet.

4.6.5 Effect of Imaging Parameters on Tracking Accuracy

The RTI parameters shown in Table 4.1 must be chosen appropriately, as they

affect the accuracy of tracking. The elliptical width parameter λ, regularization

parameter α, and buffer size NB are especially important, as the other parameters

for pixel size and scaling are mostly arbitrary.

The elliptical width parameter λ is important to minimize modeling error and

maximize tracking performance. If the weighting ellipse is set too large, motion

from objects within the ellipsoid will not contribute significantly to the variance of
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the corresponding link, and contrast in the VRTI result will be lost. If the ellipse

is set too narrow, motion outside the ellipsoid will contribute significantly to the

pixels that are inside, resulting in images with many false bright spots. Figure

4.8 shows the average tracking error ε in feet for three buffer sizes over a range of

elliptical width parameter values. In this experiment, the most accurate tracking

was accomplished with λ set to approximately 0.1.

The amount of regularization applied to the imaging can significantly affect the

accuracy of tracking. If regularization is set too low, sharp noise will corrupt the

images and cause the tracking mechanism to jump to erroneous locations. If the

images are over-regularized, the images become too flat and smooth, causing the

tracking mechanism to drift in a large circle around the target position. Figure

4.8 shows the average tracking error ε in feet for three buffer sizes over a range

of regularization parameter values. In this experiment, the most accurate tracking

was accomplished with α = 100.

The variance buffer size plays an important role in tracking accuracy. When

NB is very low, a very small amount of data is used for the variance calculation,

and the VRTI images are highly susceptible to noise and modeling error. When

the buffer sizes are too large, the VRTI images are blurred by the motion of the

targets, and tracking lag increases. The most accurate tracking is achieved when

there is a balance of the two extremes. Figure 4.8 shows the average tracking error

ε in feet for three regularization values over a range variance buffer values. In this

experiment, the most accurate tracking was accomplished with buffer size NB = 50.

4.7 Future Research

Many areas of future research are possible to improve VRTI through-wall track-

ing technology. First, improvements to the multipath models will allow a system

to track multiple individuals more accurately, and with less nodes. Many of the

assumptions presented in this paper are accurate only for cases where motion images

are sparse. More accurate statistical models of the multipath channel for device-free

localization will be needed to track multiple people that move in close proximity.

Wireless protocol research is another important part of the improvement of

VRTI. Large and scalable networks capable of tracking entire homes and buildings
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need to be explored. This will require advanced wireless networking protocols that

can measure the RSS of each link quickly when the number of nodes is high. Perhaps

frequency hopping and grouping of nodes will allow a VRTI system to measure each

link’s RSS while maintaining a low delay in delivering the measurements to a base

station.

Advancements on the physical layer modeling will allow VRTI systems to track

movement more accurately, and with less nodes. In this paper, an ellipsoid model is

used to relate RSS variance on a link to the locations of movements. This is certainly

an approximation, and future work will require the refinement of the variance

weighting model, thus leading to more accurate motion images and coordinate

tracking. Other regularization and image estimation techniques may also improve

through-wall tracking.

Radio devices could be designed specifically for VRTI tracking applications. The

affect of overall node transmission power on imaging performance is an important

area to be investigated. Directional and dual-polarized antenna designs would most

likely improve images in a through-wall VRTI system. Radio devices capable of

sticking to an exterior wall and directively transmitting power into the structure

would be extremely useful in emergency deployment and multi-story VRTI.

Finally, localization of nodes plays a significant role in tracking of motion with

VRTI networks. In an emergency, rescue or enforcement teams will not have time

to survey a location. With automatic node self-localization techniques, the nodes

could be thrown or randomly placed around an area without measurement, thus

saving valuable time.

4.8 Conclusion

Locating interior movement from the outside of a building is extremely valuable

because it enables police, military forces, and rescue teams to make life-saving

decisions. Variance-based radio tomography is a powerful new method for through-

wall imaging that can be used to track the coordinates of moving objects. The

cost of VRTI hardware is very low in comparison to existing through-wall imaging

systems, and a single network is capable of tracking large areas. These features may

enable many new applications that are otherwise impractical.
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This paper discusses how RSS variance relates to the power contained in mul-

tipath components affected by moving objects. The variance of RSS is related

to the location of movement relative to node locations, and this paper provides

a formulation to estimate a motion image based on variance measurements. The

Kalman filter is applied as a mechanism for tracking movement coordinates from

image data. A 34-node VRTI experiment is shown to be capable of tracking a

moving object through typical home exterior walls with an approximately two foot

average error. An object moving in place can be located with approximately 1.5ft

average error.

The experiments presented in this paper demonstrate the theoretical and prac-

tical capabilities of VRTI for tracking motion behind walls. Many avenues for

future research are presented which may improve image accuracy and enable larger

and faster VRTI networks. These future research areas include wireless protocols,

antenna design, radio channel modeling, localization, and image reconstruction.

Table 4.1. VRTI image reconstruction parameters

Parameter Value Description
∆p 1.5 Pixel width (ft)
λ .1 Width parameter of weighting ellipse (ft)
α 100 Regularization parameter
ψ 60 Variance weighting scale (dB)2

NB 50 Length of RSS buffer
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n = 5. Here, the mobility υm is set empirically
to track objects moving at a few feet per second.
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n = 5. Here, the mobility υm is set too low,
causing the tracking filter to lag excessively.
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Other parameters are equal to those shown in Table 4.1.
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CHAPTER 5

A STATISTICAL INVERSION METHOD

AND MODEL FOR DEVICE-FREE

LOCALIZATION IN RF SENSOR

NETWORKS

5.1 Abstract

Device-free localization is the estimation of the position of a person or object that

does not carry any electronic device or tag. This paper introduces measurement-

based statistical models that can be used to estimate the locations of people using

signal strength measurements in wireless networks. We demonstrate, using ex-

tensive experimental data, that changes in signal strength measurements due to

human motion can be modeled by the skew-Laplace distribution. The parameters

of the distribution are dependent on the position of person and on the amount of

fading that a particular link experiences. Using the skew-Laplace likelihood model,

we apply a particle filter to experimentally estimate the location of moving and

stationary people through walls, with accuracies of approximately one meter.

5.2 Introduction

Knowing the location of people is extremely valuable and useful. Global posi-

tioning systems (GPS), radio frequency identification (RFID) and real-time location

systems (RTLS) have proven their value for locating targets with an attached device.

Device-free localization (DFL) is the practice of locating people 1 or objects when

no tag or device is attached to the entity being located. DFL technologies are

therefore useful in applications like security, where the people being tracked can

not be expected to cooperate with the system. In this paper, we investigate a

1In this paper, we use the word “people” generally to refer to either people or objects that are
to be located and tracked.
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statistical inversion method for DFL in narrowband RF sensor networks, and show

its effectiveness in tracking objects located behind walls.

Various sensor technologies can be used for the purposes of DFL [8], as discussed

in Section 5.6. In this paper, we are particularly interested in DFL systems which

use received signal strength (RSS) measurements (RSS-DFL) because RSS can

be measured with a variety of widely-deployed and inexpensive wireless devices.

RSS-DFL can locate motion through building walls [17], in dark or smoke-filled

environments, and are not as invasive of privacy as video camera surveillance.

RSS-DFL systems have, to this point, significant limitations. Imaging-based

RSS-DFL systems first estimate attenuation or motion image and then estimate

the person’s coordinate from that image [17], and information can be lost in the

two-step process. In particular, variance-based radio tomographic imaging (VRTI)

cannot be used to locate a stationary (or very slow-moving) person. Fingerprint-

based RSS-DFL systems require extensive calibration measurements [13, 21]. To

date, direct coordinate estimation in RSS-DFL is ad hoc and does not consider the

statistics of the RSS measurements [11, 18].

To provide a means to address these significant limitations, in this paper, we

present a new statistical inversion method for RSS-DFL in wireless networks. The

new model allows for direct estimation of a target’s position, without the need to

use radio tomographic images as an intermediate information layer.

This statistical inversion method is enabled by a new RSS model presented in

this paper for temporal fading on static links. Significant statistical models exist for

small-scale fading, or for the frequency-dependence of fading, this model represents

an advance on two levels. First, the model presented is a function of the current

position of a person – whether or not the person is now close to the link. Second,

the model presented is a function of the fade level, that is, a quantification of the

narrowband fading experienced on the static link prior to the person’s appearance

in the environment. Fade level is a measurable quantity in RSS-DFL. The new

model takes advantage of the uniqueness of each link in the RF sensor network,

as quantified by the fade level, rather than assuming each link behaves identically

when people are located near a link. We show that links experience drastically

different behavior dependent on its fade level.
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Our model is empirical, based on extensive measurements presented in this paper

conducted in two very different environments in which DFL systems are expected

to operate. We find that the temporal variation of RSS is well-modeled with the

skew-Laplace distribution. Our measurements quantify the relation between the

parameters of the skew-Laplace distribution to a person’s location and fade level.

Finally, we demonstrate the application of the skew-Laplace model in the statis-

tical inversion method in a real-world system. We demonstrate that the method is

able to locate even motionless people through external building walls, which had not

been demonstrated in previous work. We show that moving people can be tracked

with about 1 meter error in our experiment.

The statistical approach allows us to address some key limitations of previous

RSS-DFL systems. Since the new method does not rely on manual site-specific

measurements, it can be deployed at multiple sites without the need for offline

training. The training, in essence, has already been performed in the modeling of

the statistics. Furthermore, the new method does not require a specific network

location geometry or regularity in the environment.

The statistical inversion process we propose is illustrated in Fig. 5.1. First, raw

measurements are received at a base station processing unit. These measurements

are combined with knowledge about the node locations to quantify the fade level

F on each link, as well as the mean Pm of each link. This calibration information

is used to determine a statistical likelihood model based on the skew-Laplace dis-

tribution, as discussed in a later section. The likelihood model provides the basis

for particle filtering, a non-linear and non-Gaussian filter for recursive estimation,

which is used to infer device-free location results.

5.3 Statistical Modeling

5.3.1 Overview

In general, a statistical likelihood model represents the noisy translation from

a state space to a measurement space (see Fig 5.2). Given a particular state,

a certain distribution of measurements will result. This can be thought of as a

forward process, and the likelihood distribution P (Y |X) defines it, where X is the

state to be estimated, and Y is received or measured data. The inverse problem,
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therefore, involves taking measured data and estimating the distribution of the

state. The posterior distribution P (X|Y ) defines it, and it is found by applying

Bayes’ theorem

P (X|Y ) =
P (Y |X)P (X)

P (Y )
. (5.1)

In our case, the state-space X is the coordinates of device-free entities within

a wireless network, and the measurements Y are RSS values of each link in the

network. We take the RSS measurements and infer the position of the targets by

inverting the statistical model through the posterior distribution.

The likelihood function P (Y |X), and the a priori knowledge of the state de-

scribed in P (X), describes the statistical model that can be used to invert the

problem. We are therefore interested in knowing how the position of targets affects

the resulting RSS measurements, and how those statistics change for different

positions of the target. We expect a target standing on the line-of-sight (LOS)

of a link to cause significant changes to the RSS measurements, while a target at

a distant position away from the LOS will not. The statistics for each ”link-target

geometry” are modeled in the likelihood functions.

The a priori information P (X) can be used to incorporate known information

about the targets. Since targets must move with finite velocity, this information

allows an inversion algorithm to more accurately estimate positions over time. If

the location of the targets movement is constrained by walls or other obstacles, the

probability that the target will occupy those areas can be set to zero.

5.3.2 Measurement Collection

To form a likelihood model, an experimental RF sensor network was deployed

to capture measurements. The network nodes consisted of 34 TelosB nodes from

Crossbow, each utilizing the IEEE 802.15.4 protocol in the 2.4GHz frequency band.

The same token passing protocol as described in [15] was used to prevent wireless

packet collisions while maintaining low data collection latency.

The experimental network was deployed in two areas, one throughout the aisles

of a bookstore, and one around the outer perimeter of a home. Both cases were rich

in multipath, and no furniture or obstructions were removed from the areas in which

the networks were deployed. In the bookstore deployment, nodes were placed on
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shelves and stands at approximately human waist level. Some links crossed through

multiple aisles, and some were in direct LOS.

In the outer home deployment, the network was deployed in an area around a

four-wall portion of a typical home. Three of the walls are external, and one is

located on the interior of the home. The interior wall is made of brick and was an

external wall prior to remodeling of the home. Objects like furniture, appliances,

and window screens were not removed from the home to ensure that the tracking

was functional in a natural environment.

The nodes were placed in a rectangular perimeter, as depicted in Fig. 5.3. It

was neither possible, nor necessary, to place the nodes in a uniform spacing due to

building and property obstacles. Eight of the nodes were placed on the inside of

the building, but on the other side of the brick interior wall.

To avoid network transmission collisions, a simple token passing protocol is

used. Each node is assigned an ID number and programmed with a known order

of transmission. When a node transmits, each node that receives the transmission

examines the sender identification number. The receiving nodes check to see if it

is their turn to transmit, and if not, they wait for the next node to transmit. If

the next node does not transmit, or the packet is corrupted, a timeout causes each

receiver to move to the next node in the schedule so that the cycle is not halted.

A base-station node that receives all broadcasts is used to gather signal strength

information and pass it to a laptop computer for processing.

RSS data were gathered as humans walked near and through the networks. The

location of each person was carefully tracked by placing markers on the ground. To

keep each target moving at a constant velocity, an audible metronome was played

over a speaker, allowing each person to step to the next marking at the correct time.

Using this technique, millions of RSS measurements were gathered, along with their

corresponding target positions.

Since our likelihood models are based on changes in signal strength, a calibration

process was used for each deployment. During calibration, RSS measurements for

each link were taken while the network area was vacant of people. Each link’s RSS

measurements were averaged and used to determine the change in RSS for modeling.
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5.3.3 Fading Information

People moving near a wireless link will cause changes in RSS due to diffraction,

shadowing, and fading. This temporal variation is different from small-scale or fre-

quency selective fading that occurs due to relative motion between the transmitter

and receiver in multipath environments. Instead, a subset of multipath components

are affected by the presence of the person near the wireless link [17,31].

When the channel is predominantly LOS, such as in an open outdoor area, then

a human crossing the LOS will generally cause a drop in signal strength due to

signal shadowing. This phenomenon has been applied to image the attenuation of

humans within a wireless network [15].

When an environment is rich in multipath and heavily obstructed, the presence

of a human on the LOS of a link causes unpredictable changes in RSS. Sometimes

the power may drop, sometimes it may not change at all, and sometimes it will rise.

To take advantage of these fluctuations, variance-based radio tomographic imaging

(VRTI) was introduced [17], which enabled tracking of movement behind walls. The

key weakness of VRTI, however, is that targets must remain moving in order to be

tracked. Stationary targets or those that move very slowly will not be imaged.

We point out here that the amount of fading on a link plays an important role

in the resulting temporal variation statistics. Links that experience deep fades due

to the natural multipath environment are more likely to experience a high variance

of RSS when a person enters the vicinity, and will usually increase in power. On the

other hand, links that constructively interfere vary much less, and usually decrease

in power when disrupted. This phenomenon was simulated in [72], and is further

confirmed by our measurements. We call these constructively interfering situations

“antifades” and quantify them in Section 5.3.4.

To further illustrate this phenomenon, an example of how RSS varies over time

for two links of equivalent distance is shown in Fig. 5.4. Since the path length and

environment are the same, one can observe that in relative terms, the fading level is

20 dB different. We can consider link 1 to be in an antifade and link 2 to be in a deep

fade. As a human walks through the LOS path of the two links, the RSS changes.

In the case where the link is in an antifade, very little variance is experienced when

the person is not directly between the nodes. When the person crosses, the RSS
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drops significantly since the link was already experiencing constructive multipath

interference. Any disruption to the phases or amplitudes of the multipath would

therefore bring the power down. In the deeply-faded link, the opposite is true;

any disruption to the link tends to bring the power up. In this example the RSS

generally increases while the human walks through the LOS, as seen in the figure.

5.3.4 Quantification of Fade Level

We now quantify the amount of fading occurring on a static link by defining a

”fade level.” In a wireless channel, the ensemble mean P (d) (dBm) measured by

the receiver is dependent on the distance d from the transmitter [73].

P (d) = PT − Π0 − 10 np log10

d

∆0

(5.2)

where PT is the transmitted power in dBm, np is the path loss parameter, and Π0

is the loss measured at a short reference distance ∆0 from the transmitter.

In multipath environments, fading will cause a significant deviation from the

prediction in the path loss equation. We quantify the fade level F (dBm) as the

difference between the path loss prediction and the actual measured received power

Pm in dBm.

F = Pm − P (d) (5.3)

Assuming the locations of each node are known or estimated in a wireless

network, it is simple to calculate the fade level for each link. First, the power

for each link is measured and averaged over an arbitrary time period to obtain Pm.

Next, the path loss model is given the known distance of the link to determine

P (d), based on a known path loss parameter and reference powers. The path loss

parameter can also be estimated without prior knowledge by performing a fit using

all measurements from the network.

5.3.5 Measurement and Modeling Results

No current model exists for the statistics of temporal variation on a wireless

link as a function of the static fade level. To obtain such a model, we bin each

RSS measurement according to its known fade level found during calibration. We

then examine histograms for each bin of fade level. Additionally, we separate RSS

measurements for when a person is located on the direct LOS path.
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The distribution of RSS measurements when a person is on the LOS for low fade

levels is found to have a heavier tail in the positive direction, while the distribution

for high fade levels has a negative skew. Histograms of the data are shown in and

Fig. 5.7 and Fig. 5.7. For fading levels of -15dBm and less, the decay on the

positive side of the skew-Laplace is much slower when a person is standing on the

LOS path. On the other hand, when the fade level is greater than 10dBm, we see

that tail on the negative side of the distribution is longer. When the target is not on

the LOS path of the link, the variance of the distribution is significantly less. The

data visualized by these histograms are in accordance with our heuristic argument

that links already in a deep fade should rise in power when disturbed, and vice

versa.

With the understanding that the skew of the RSS distribution is dependent

on the static fade level, a nonsymmetric probability density function with both

positive and negative support is desired. The skew-Laplace distribution fits our

measurements surprisingly well, as seen in the quantile-quantile plots of Fig. 5.7

and Fig. 5.7. It is controlled by three parameters, and is defined as

f(x; a, b, ψ) =
ab

a+ b

{
e−a(ψ−x) if x ≤ ψ
e−b(x−ψ) if x > ψ

(5.4)

where a and b represent one-sided decays of the distribution for values less than or

greater to the mode ψ. For the purposes of DFL, the values for each parameter of

the skew-Laplace distribution is dependent on the fading level of the static link and

the link-target geometry.

The RSS distributions shown in Fig. 5.7 and Fig. 5.7 represent the two extreme

fading cases. When a link is neither in a deep fade nor an antifade, the parameters

of the distribution will fall between those of the extremes. In other words, the

parameters of the likelihood model are dependent on the value of fade level. These

parameters are approximately linear with the fade level, and we use the least-squares

criteria to determine the line of best fit. The linear fit equations are presented in

Table 5.1.

The mode parameter ψ for varying fade levels is shown in Fig. 5.7. We see that

when the target is off the LOS path, the peak parameter is near zero for all values
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of the fade level. When the target is located on the LOS path, a piecewise-linear

function can be used to approximate the parameter for a given fade level.

The decay parameters for varying fade levels are shown in Fig. 5.7 and Fig. 5.7.

All parameters can be approximated with a piecewise-linear function of the fade

level. We see that as the fade level increases, the decay parameters increase as well

for both the on and off LOS cases. In other words, links that experience a deep

fade have higher variance than those that experience an antifade.

To summarize the model, the distribution of RSS measurements is dependent

on the existence of the target on the LOS path, and on the static fade level of the

link. The values for each of the different cases are presented in Table 5.1. The fade

level, as discussed previously, can be computed by deploying a network before any

targets have entered an area, or by processing measurements over time.

5.4 Particle Filtering

5.4.1 Overview

There are many frameworks for estimating a posterior distribution using likeli-

hood models. Kalman filtering, in its multiple forms, is by far the most common

of these algorithms. For our application, the particle filter is an attractive form of

posterior estimation, and a simple and brief outline of particle filtering is provided

here. The derivation, theory, and variants of the particle filter will not be covered,

as this information is widely available in the literature [74–77].

There are a number of reasons why particle filtering is attractive for DFL in RF

sensor networks. First, particle filters do not make any assumptions on linearity of

the measurement process or the dynamics of the state being estimated. Since our

likelihood models are dependent on the existence of a target on the LOS path of

each link, this is an important flexibility. Furthermore, nonlinear models for target

movement can be incorporated directly into the particle framework.

Secondly, unlike the Kalman filter, the particle filter does not require the like-

lihood distributions to be Gaussian. This is extremely important for applying our

likelihood functions, as they are well-modeled as skew-Laplace. Assuming Gaussian

distributions would be suboptimal, and may introduce significant tracking error.

Finally, the particle filter is attractive for real-time processing since incoming
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measurements can be used to update the posterior estimation without storing a

history of previous measurements. As new measurements arrive, the algorithm

recursively predicts and updates its estimation in a manner similar to that of the

Kalman filter.

The use of a particle filter for DFL is not without disadvantages. The primary

weakness of particle filters is the computational complexity required to run the

algorithm. The particle filter naturally relies on a high number of particles to achieve

good accuracy, which comes at the expense of computational resources. There are

many forms of the particle filter, including the auxiliary particle filter [75] and the

unscented particle filter [76], which aim to increase efficiency.

5.4.2 Particle Filter Algorithm

In this work, each particle represents a particular hypothesized location coordi-

nate of a target. Let xk be the true location of the target at time k, and let the

set {x̃ik} be the set of particles that represent hypotheses of target position. Let

{wik} be the weights of each particle at time k, let yk be the current difference in

RSS measurements for each link from the calibration data, and let x̂ be the target

location estimate. We use the following simple sampling-importance-resampling

(SIR) [74] particle filter to perform our experiments.

1. Measure: Receive new measurement vector yk from the network. Each

element of the measurement vector represents an RSS measurement from each

link in the network. This measured value is differenced with calibration data

to determine the change in RSS.

2. Weight update: For each particle li = 1,...,Np, use the measurement vector

yk to determine the updated weights.

• Determine p(yk|x̃ik) using the skew-Laplace likelihood model with param-

eters found in Table 5.1. Fade levels are determined during calibration,

as described previously.

• Update weights with wik = wik−1p(yk|x̃ik).

3. Normalize the weights: wik = wik/
∑

j w
j
k.



112

4. Resample: Particles with heavy weights are reproduced, particles with very

low weights are eliminated. A simple algorithm for performing this task is

found in [74].

5. Move the particles: Apply a Markov transition kernel to each particle. In

our experiments we use the Metropolis-Hastings algorithm with a standard

normal randomization [78].

6. Estimate: Average the particles to obtain the mean of the posterior distri-

bution as the current state estimate.

In this algorithm, we assume that the particle filter proposal distribution

q(xk|xk−1,yk) is equal to the Markov transition p(x̃k|xk−1), which leads to the very

simple weight update step. While this assumption makes for easy implementa-

tion, the efficiency of the particle filter is drastically reduced, since the current

measurement is not used to propose new particle positions. The development and

application of more efficient DFL particle filter designs is a topic for future research.

5.5 Experimental Results

5.5.1 Description and Layout

This section presents the results of a through-wall tracking experiment utilizing

the skew-Laplace likelihood models and particle filter. We use the same experiment

data as in [17], which is the same outer perimeter deployment discussed in Section

5.3.2.

In all experiments presented here, a calibration of RSS was taken while the

surveillance area was vacant. The calibration stage lasted for approximately 30

seconds, and all RSS values were averaged for each link over this period. Each

incoming measurement is then compared with the calibration data to determine

the change in RSS, as discussed in the modeling. The calibration measurement is

also used to determine the fade level of each link. A flowchart of the entire process

is provided in Fig. 5.1.

5.5.2 Stationary Targets

A key benefit of the proposed models and algorithms is the ability to locate

stationary objects behind walls. VRTI tracking systems [17] are unable to locate



113

stationary objects, since the algorithms rely on the variance caused by target

motion. Here, the particle filter is able to locate stationary targets as long as

calibration data is available.

The convergence of the particle filter around a target is illustrated in Fig. 5.7

and Fig. 5.7. After five iterations of the filter, particles along a particular narrow

area survive, while other areas are eliminated. This is because a particular link is

reporting a statistically significant change in RSS, and the particle filter narrows

its search to areas near that particular LOS. In this case, after ten iterations, the

particle filter has completely converged around the target’s position.

To determine the accuracy of the statistical method for tracking stationary

objects through-walls, 20 trials were performed. At each trial, a human target

stood completely motionless at a different known location on the interior of the

surveillance area. The known and estimated positions are shown in Fig. 5.14. The

average error over the 20 trials was 0.83 meters.

5.5.3 Moving Targets

To test the accuracy of our model for tracking moving targets, a human target

moves at a typical walking pace on a predefined path at a constant speed. A

metronome and uniformly placed markings on the floor help the person to take

constant-sized steps at a regular time interval. The target’s actual location is

interpolated using the start and stop time, and the known marker positions. The

results of the tracking are presented in Fig. 5.15, and the average error for this test

was 1.02 meters.

The particle filter is less effective for the moving targets than for the station-

ary targets in our experiments. This is because the particle filter has not been

designed to take into account the true dynamics of a moving target. Since targets

tend to move in spurts of constant velocity, for example, this information can be

incorporated for more accurate tracking.

Another weakness of the particle filter for tracking moving targets is known as

“particle impoverishment.” Since the particles eventually converge around a small

area, if the target “escapes” the cloud of current particles, it becomes very difficult

for the filter to track. In other words, the target is located at a position where no



114

hypotheses are being made. Thus, developing a particle filter design that takes into

account current RSS measurements to propose new particles is an important topic

for future research.

5.6 Related Work

Various sensor technologies can be used for the purposes of DFL [8]. The most

common form of a DFL sensor is the optical camera. Infrared and thermal cameras

are also increasingly common in military and security applications. While these

technologies are certainly valuable, visible light cameras depend on an external

source of light. Furthermore, optical, thermal, and infrared sensors are hindered by

opaque or insulating obstructions.

There is an advantage to using radio frequency sensors to infer people’s locations

instead of optical, thermal, and infrared sensors. RF waves have the ability to

penetrate obstructions like walls, trees, and smoke. Thus, DFL systems that use RF

sensors (RF-DFL) are capable of locating people through walls, in poor-sight out-

door environments, or in a smoke-filled buildings. These capabilities have obvious

value for military organizations, police forces, and firefighter and rescue operations.

Furthermore, RF-DFL systems often do not have the ability to identify or get

detailed information about the people’s actions. In some applications this may be a

limitation, but in others the additional preservation of privacy compared to camera

surveillance may be desirable.

The most common and widely used form of RF-DFL is ultra-wideband (UWB)

radar [38, 39]. UWB systems work by producing a very fast pulse of RF energy

and recording the amplitudes, time delays, and phases of the reflections caused by

objects and people in the vicinity. Some UWB systems are monostatic, meaning

the transmitter and receiver are incorporated into a single device. Others are

multistatic, where a single pulse transmission may be received by multiple devices

deployed throughout an area.

Recently, researchers have begun to study and develop DFL systems that use

the received signal strength (RSS-DFL) of links in narrowband RF sensor networks.

The advantage to this approach lies in the fact that RF sensors capable of measuring

signal strengths are ubiquitous and inexpensive. The cost of each node is orders
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of magnitude lower than a UWB device, so deploying a network with tens or

hundreds of nodes is financially feasible in many applications. Furthermore, RSS

measurements can be obtained from off-the-shelf devices like wireless networking

routers, wireless sensor modules, and cell phones.

One approach to RSS-DFL in wireless networks is to use RSS fingerprinting,

or radio maps [13]. In this approach, the system is trained by a person stand-

ing at many predefined positions, and RSS measurements are recorded while the

person stands at each location. When the system is in use, RSS measurements

are compared with the known training data, and the closest matching position is

selected from a list. The accuracy can be further refined by combining multiple

best-matching positions and using an appropriate interpolation [21].

The strength of the RSS fingerprinting approach is that the variations in RSS

caused by the target in the multipath environment are an advantage. Each target

position will lead to very different vector of RSS measurements, making it easier

to detect the location. The weakness of such a system is the need for manual

training and maintenance. Measurements must be taken offline, and changes to the

environment such as doors opening or moved furniture will corrupt the training.

Furthermore, the training becomes exponentially difficult for localization of multiple

targets.

Zhang et. al. present an algorithm which directly estimates a human’s position

from RSS measurements [11]. In this work, when a link measures RSS variation

above a threshold, it is assumed that the target is located within a rectangle centered

at the midpoint of the line between the transmitter and receiver. A “best-cover

algorithm” then estimates the person’s position, which is input into a tracking

filter. This work was extended in [18] to use a clustering algorithm for multiobject

tracking.

One approach to DFL is to estimate an image of the change in environment. This

image can then be used to infer the motion and activity within the environment,

either by a human operator, or by an image processing algorithm. Image estimation

from measurements along different spatial filters through a medium is generally

referred to as tomographic image reconstruction. For RF sensors, this is termed

radio tomographic imaging (RTI) [15, 17, 19, 45]. In [15], the attenuation in dB
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caused by each voxel in the environment is imaged using measurements of RSS

for each link in a dense wireless network. This technique can be referred to as

shadowing-based RTI, since the measurements effectively measure shadowing loss,

and the image estimates are shown to accurately display the location one or two

people in the deployment area [15]. The linear model for shadowing loss is based

on correlated shadowing models [45,46].

Another modality of RTI is termed variance-based RTI, in which the windowed

variance of RSS on each link is used as the measurement, and the estimated image

represents a quantification of the motion within each voxel. Experimental tests

reported in [17] show that variance-based RTI can image the motion going on inside

a house, when sensors are placed only outside of its external walls. In the case of

imaging motion through building walls, we can have the problem that the multipath

which travel around the building can be stronger than the power in paths which

traveled through the building. Analytical results in [17] suggest that the change in

variance can be detected even when the power in the affected multipath is 10 dB

less than the multipath which do not go through the building.

5.7 Conclusion

Previous work in the field of RSS based DFL has proven that it is possible to

locate humans using only RSS measurements, even through walls. In particular,

radio tomographic imaging provides a method for DFL that does not require exhaus-

tive training information, but previous work in this area has been unable to locate

stationary or slowly moving targets in highly obstructed areas. This paper provides

a statistical model and inversion method that is capable of locating stationary as

well as moving targets.

The amount of fading on a static link is an important factor in determining the

signal strength distributions when a target enters an area. If the link is already

in a deep fade, the disturbance a target causes to the multipath will tend to bring

the signal strength up. Links in deep fades also exhibit more variance, since even

slight changes to multipath components can bring the link out of the fade. Links

that experience antifades, however, exhibit the opposite behavior. Changes to the

environment due to target presence tend to bring signal power down, and variances
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remain much lower.

The skew-Laplace distribution is a reasonable representation of how RSS mea-

surements change when a target is present. The mode and decay parameters of

the distribution are dependent on the fade level of the link, as well as the target’s

position. When a target is on the LOS path of the link, RSS fluctuations are

significantly larger than when the target is off-LOS. Each parameter, for both the

LOS and off-LOS cases, is linear with the fade level.

Since the likelihood models are non-Gaussian and nonlinear, the particle filter

framework is an attractive was to estimate target positions using RSS measure-

ments. Experiments using a particle filter and the skew-Laplace likelihood models

demonstrate the method’s effectiveness in locating stationary and moving targets

behind walls. Previous work in through-wall DFL in wireless networks was unable

to locate stationary objects at all.

There are many opportunities for future work on statistical models for DFL in

wireless networks. First, the skew-Laplace and LOS models presented in this paper

are only one way of approaching the problem. Other methods certainly exist, some

of which may provide a better statistical divergence for varying target positions.

A model that has higher contrast for the on-LOS distributions vs. the off-LOS

distributions will lead to more accurate DFL tracking.

Next, the basic particle filter needs to be further refined for more efficient and

accurate tracking. A mechanism for proposing new particles based on current

measurements will allow the filter to track with much fewer particles, thus saving

computational resources. Furthermore, improvements to the particle filter’s motion

modeling will result in more accurate tracking.

Finally, a model that explicitly accounts for multiple targets needs to be inves-

tigated. As many people enter the area near a wireless link, interactions of the

multipath components become more complex. The RSS measurement statistics of

such a scenario need to be modeled, quantified, and then applied in an estimation

framework like the particle filter. Multiple target tracking is a necessity for many

practical DFL applications.



118

Table 5.1. Linear parameter fitting for the skew-Laplace likelihood model

ψ a b
LOS (F ≤ −6) −3.85− .631F .350 + .004F .607 + .028F
LOS (F > −6) 0.0 .350 + .004F .607 + .028F

Off LOS 0.0 .726 + .019F .902 + .040F
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Figure 5.1. A flowchart describing the statistical inversion process for device-free
localization in wireless networks.
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Figure 5.2. An illustration showing the role of likelihood and posterior distribu-
tions for statistical inversion.
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deep fade.
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histograms are for links experiencing deep fades less than -15dBm.



124

15 10 5 0 5 100.0

0.1

0.2

0.3

0.4

0.5

Ta
rg

et
 o

n 
LO

S skew-Laplace
Measured

15 10 5 0 5 10
Change in RSS

0.0

0.1

0.2

0.3

0.4

0.5

Ta
rg

et
 o

ff 
LO

S

Figure 5.6. RSS measurement distributions for on/off LOS target positions. The
histograms are for links experiencing antifades greater than 10dBm.
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Figure 5.7. Quantile-Quantile plots for deep fades.
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Figure 5.8. Quantile-Quantile plots for antifades.
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Figure 5.10. Decay parameters when the target is located on the LOS path.
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Figure 5.11. Decay parameters when the target is off the LOS path.
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Figure 5.12. The convergence of the particle filter after 5 iterations The filter has
determined that the target is located along a particular LOS path.
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Figure 5.13. The convergence of the particle filter after 10 iterations The filter
has completely converged around the location of the target.
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Figure 5.14. Estimated positions of a stationary target at different positions. The
estimated position was taken after 50 iterations of a particle filter with 200 particles.
The average error for this experiment was .83 meters.
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Figure 5.15. Estimated positions of a human walking along a known path. Here,
the particle filter uses 200 particles and tracks with an average error of 1.02 meters.



CHAPTER 6

CONCLUSION

This dissertation is concluded with a summary of key research findings. Oppor-

tunities for future work are also discussed.

6.1 Key Findings

When humans and other moving objects enter the vicinity of a wireless link, the

signals are reflected, absorbed, diffracted, and scattered by the mass of the body.

This leads to changes in measured signal strength at the receiver. In outdoor areas,

or in other predominantly LOS environments, a human standing along the LOS of

a link usually shadows the signal.

Experiments in LOS environments show that the shadowing attenuation of a

human body can be imaged using only signal strength measurements in a wireless

network. The key assumption used in the imaging is that the signal travels in a

direct line from transmitter to receiver, and the location of each node in the network

is known. This technique, called radio tomographic imaging, can be used to locate

humans or other changes to the attenuation of the environment. Noise in such a

system can be modeled accurately using a mixture Gaussian distribution, and lower

bounds on the error of the tomographic image can provide an idea of image accuracy

for different network geometries.

In rich multipath and heavily obstructed areas, the shadowing model of RTI

begins to break down. Humans moving near the wireless links still affect the

measured RSS at the receivers, but in a much less predictable manner. A human

standing directly on the LOS path of a link may cause the RSS to lower, to not

change significantly, or to rise. The attempt to image based on shadowing effects

of the signals fails in these cases.

Even if a mapping of how a signal propagates through a multipath environment

were available, estimating the attenuation using only signal strength is not possible.
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If a person only affects a subset of the total multipath, and no phase information is

available at the receiver, there is no way to predict whether the change in multipath

will cause constructive or destructive interference. Therefore, the RTI model which

proposes the estimation of attenuation due to shadowing only, is not viable. The

model must be changed to estimate more abstract values, such as presence and

motion.

Variance-based radio tomographic imaging is a method that can compensate

for the unpredictable changes in RSS in a heavy multipath environment. In this

technique, it is not assumed that the signal will be shadowed by the presence of a

human on the LOS path. Instead, we assume that when a human moves near the

LOS of a link, the RSS will experience more variance than if the human moves at

a far distance from the LOS path. By examining the variances of each link in the

network, an image of where motion is occurring can be estimated.

Variance-based radio tomographic imaging is capable of imaging movement

in rich multipath environments, even through walls. An experiment of 34 nodes

deployed around the exterior walls of a home showed the VRTI system was capable

of locating a moving human with an average error of less than one meter. This could

provide a powerful method for locating people through walls in rescue, military, and

other emergencies, where entry to a building is not possible. The key limitation of

variance-based methods is that the people being tracked must be in motion. If

someone moves very slowly, or remains motionless, their location is not revealed in

the image.

To further understand the statistics of RSS in DFL networks, a detailed model

was developed based on extensive measurements in networks deployed in real-world

environments. A key finding during this study was that the static fade level of a link

plays a significant role in determining the statistics of temporal variation. When a

link experiences a deep fade, people entering the area will usually increase the signal

strength measured at the receiver. On the other hand, when a link is constructively

interfering, humans interfering with the signals will usually bring the RSS down in

power. Additionally, RSS variance of a link is higher when it experiences a deep

fade. The statistical distributions of temporal variations therefore have long and

asymmetric tails, depending on the fade level of the static link. Links in deep fades
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have distributions with longer positive tails, while links in anti-fades have longer

negative tails.

It’s important to note that links in deep fades are not necessarily of less value

than those in antifades. Links in deep fades are more sensitive to small changes in

the environment, which is why more variance is experienced. The important metric

in evaluating the ability of a link to localize a target is the divergence of the LOS vs

non-LOS distributions. When the divergence of these two distributions is high, the

ability to distinguish the location of a target is enhanced. Divergence may provide

an important metric for comparing the performance of the skew-Laplace LOS model

with other possibilities that will arise in future work.

To fit these shapes, the skew-Laplace distribution is useful for two reasons. First,

it can be skewed in either the positive or negative direction, depending on the param-

eters. This allows for fitting the RSS measurements in deep fades and in anti-fades.

Quantile-quantile plots show that the fit is very accurate. Secondly, the parameters

of the skew-Laplace distribution fit RSS measurements in real-environments with

a piecewise linear function of the fade level. If the fade level of a link is known,

then the parameters of the distribution can be determined easily, providing an

accurate accurate statistical model of how signal strength should change when a

person stands on the LOS of a link.

The skew-Laplace likelihood model can be applied in statistical inversion algo-

rithms to locate people with RSS measurements. Particle filters are attractive for

this purpose for a few reasons. First, particle filtering does not require that the

likelihood functions are Gaussian. Assuming Gaussian distribution in this case is

erroneous, and would introduce significant modeling error. Second, particle filters

can easily handle nonlinear measurement processes and state-transition processes.

In this case, measurement statistics are non-linear since they change depending on

if a person is located on the LOS of the link or not.

An experiment using the skew-Laplace model and a basic particle filter algorithm

shows that a person can be located and tracked behind walls with an average error

of approximately one meter. The advantage here is that stationary or slowly-moving

people can be located, thus addressing the key limitation of variance-based tomog-

raphy. The key cost of using particle filters is computational, and future work will
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require the development of more efficient particle filters for RSS-DFL.

6.2 Comparison of Tracking Methods

Each tracking method presented in this dissertation holds some key advantages

and disadvantages. The shadowing-based RTI model is appealing in predominantly

LOS environments where multipath is low. This may be the case for outdoor

areas, or indoor areas with large and obstruction-free zones. The model is easy to

implement, can be run on modest computing hardware, and can accurately locate

both stationary and moving objects. Furthermore, multiple objects can be imaged

easily, since the non-linearities of introducing multiple people in an area does not

overwhelm the LOS shadowing models.

VRTI tracking is very simple to implement and can be run in real-time on modest

computer hardware. All models are linear, and estimation of the VRTI results are

calculated in closed form via Tikhonov regularization. The Kalman filter is also

extremely efficient at tracking the peak of the image stream, and since variance can

be calculated on the fly, no calibration is needed. The no-calibration feature is a key

feature of VRTI systems, as they can be deployed quickly in emergency situations

with no baseline measurements.

The skew-Laplace particle filter tracking claims the key advantage of being able

to locate people in heavily obstructed areas when they are not moving. However,

this is done at the expense of requiring calibration data. This calibration data

could possibly be automatically determined for emergency deployments, but there

will always be the penalty of a more complicated algorithm when compared to

purely variance-based methods for the purposes of calibration.

Our experiments show an average error for locating a person walking within walls

of 2.07 feet using VRTI with Kalman filter tracking, and an average error of 3.3 feet

for the skew-Laplace particle filter. The comparison, however, is not particularly

meaningful since the parameters of VRTI and the Kalman filter are not directly

comparable with those of the particle filter. It’s sufficient to say that tracking

performance of both the VRTI and statistical methods are on the same order, with

one being preferable to another depending on the computational resources available,

and the circumstances of deployment.
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6.3 Future Work

The field of RSS-based device-free localizaiton is very ripe for future research.

Opportunities to improve this technology exist in hardware, protocol design, physi-

cal layer signaling, applied mathematics, and statistical inversion. This section will

describe some ideas that are currently ready for investigation.

Hardware design will play a key role in the improvement of RSS-DFL networks.

The effect of directional and polarized antennas needs to be investigated, especially

in through-wall deployments where it is critical to radiate as much energy into the

surveillance area as possible. Radios with higher resolution RSS indicators may

also lead to significant improvements in tracking. as current studies typically use

hardware with approximate quantizations of one dBm.

Future hardware may be able to incorporate phase information into DFL algo-

rithms without a drastic increase in node cost. It is important to note that radio

tomography is by nature a non-linear problem; the propagation of the waves, and

thus the measurement process, is dependent on the values being estimated. Having

phase information available may allow future models and algorithms to estimate

the scattering caused by the device-free objects themselves, and thus lead to more

accurate tracking. This will be especially important for tracking a higher number

of people, since the measurements become highly coupled in these cases.

Physical layer studies need to be performed to determine the effect of frequency,

bandwidth, and spectral shape in RSS-DFL systems. Lower frequencies are known

to penetrate obstructions easier, but RSS measurements at longer wavelengths may

be less affected by human movement. What frequencies are best for locating people

in the various DFL applications? Can the use of multiple frequencies improve

performance? How does modulation and spectral shape improve or degrade per-

formance? These are all questions that need to be further investigated in future

research.

Along with future investigation of physical layer signals for DFL, incorporation

of environmental aspects of a region may provide a significant improvement to

the technology. If the electromagnetic properties of walls is known beforehand,

for example, this information could be used to refine the models and improve

localization accuracy. One should take into account the fact that wood or drywall
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materials may cause the system to behave completely differently than reinforced

concrete or brick. Perhaps integrating the model with floor plans and materials

could allow one to adapt the model without too much of a user burden. The more

prior information that can be incorporated, the better DFL performance can be

achieved.

Automatic localization during calibration is another important aspect in the

design of rapidly deployable DFL networks. In emergency situations, responders

will not have time to manually determine the location of each node of the tracking

network. To address this limitation, the system would first need to undergo a

localization phase during calibration. The responders would randomly deploy the

nodes around the area of interest, and upon completion of node localization, they

would begin estimating location of device-free entities. This could be accomplished

with GPS in outdoor environments if the accuracy is high enough, or possibly by

various sensor localization methods, including RSS-based techniques.

As DFL networks are deployed over large areas, the technology will require new

methods for quickly measuring RSS and transferring them to a processing station.

As more nodes are deployed over large distances, the latency of capturing data

will become more of an issue. This problem creates a need for protocols that are

capable of learning where packet collisions occur in the network, and scheduling

each node transmission accordingly. The optimal scheduling will allow nodes that

are out of range from each other to efficiently transmit without causing a collision

at neighboring nodes.

In addition to spatial reuse protocols, frequency reuse is an important area

for future research. How can frequency hopping allow for nodes to gather RSS

measurements quickly without causing interference at neighboring cells? By using

multiple frequencies, can more information be delivered to the base station for

processing in the same amount of time? These and other questions need to be

investigated in future research.

While some research on different regularization methods have been discussed in

this dissertation, there are many more that need to be investigated. The images in

RTI represent changed attenuation, and images in VRTI represent motion. Both are

quantities that should be constrained by non-negativity in the mathematical regu-
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larization models. Incorporating this information will very likely lead to improved

image accuracy and tracking.

The work in this dissertation has shown that non-linear regularization methods

like total variation are very appealing for RTI. The resultant images are high

contrast, and have sharp edges at the boundaries of the object being imaged. The

downside is that these non-linear methods require a numerical optimization routine,

which increases the computational complexity of the estimation significantly. In

RTI and DFL applications, however, the current solution is often very close to

that of the previous solution. Incorporating this information into iterative image

estimation and filtering methods may allow for high image quality when using

otherwise computationally complex regularization techniques. Furthermore, past

measurements can be used to more accurately estimate current images in a recursive

fashion.

The RTI and DFL models presented in this paper generally assume that changes

in signal strength happen most on the LOS of a wireless link. In real environments,

this is not always true. Radio signals may diffract around metal objects or other

dense obstructions, deviating the main path of propagation from a straight node-to-

node line. One way to address this issue would be to incorporate known information

about the environment into the model.

In many applications, however, incorporation of environment knowledge may not

be efficient or possible. Instead, an adaptive transfer matrix model might increase

performance. As measurements and estimations are made, the model could correct

itself recursively by comparing current result characteristics with known desired

characteristics. Many techniques found in the adaptive filter and blind equalization

literature could be applied for the purposes of identifying the channel. With the

estimated propagation information, the model can be updated for more accurate

tracking and imaging.

Adjusting for changes to the propagation model might lead to more accurate

results, and it also might lead to tracking objects in channels that are known to

be changing. If one assumes that nodes are no longer statically deployed, but

are attached to other humans throughout an area, then the channel will change

significantly as the nodes move. An adaptive channel measurement system could
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account for these changes and incorporate them into the estimation framework,

thus allowing the device-free objects to be tracked by those carrying devices. This

form of tracking would enable a number of compelling applications in security and

rescue.

Particle filtering is an attractive form of estimation for RSS-DFL due to its

nonlinear and non-Gaussian framework. However, the basic particle filter described

in this dissertation is computationally expensive and inefficient. Particle filters that

take into account current measurements to propose new particles is therefore an

important aspect of advancing RSS-DFL technology. This will enable the tracking

to be performed in real-time on small computers; a desirable characteristic in many

applications.

Finally, for many applications, tracking multiple targets is essential. Future

research must investigate statistical models for RSS measurements when multiple

targets are present within the network surveillance area. How do the current skew-

Laplace likelihood models change when multiple targets are standing on the same

LOS path? How do the current models change when one person stands on the LOS

path, and many others are off-LOS? Models that relate the coupled positions of

multiple targets is a significant challenge, and yet they are extremely important in

carrying the field of RSS-based device-free localization into the future.

The study of device-free localization using signal strength measurements in

wireless networks is still in its infancy. For some applications, the technology is

now ready for commercialization and delivery to real products and systems that

will deliver valuable benefits to end users. Other applications will require further

advancement before commercialization is possible.

As the simpler forms of RSS-DFL systems are successfully implemented in real-

world systems, new needs and challenges will reveal themselves. These challenges

will provide engineers with a stream of new research problems as the cycle of

industry demands and research solutions continues. The field of RSS-DFL will,

without a doubt, provide a basis for many innovative products and systems that

will make our lives safer and richer.
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