1. Starting with X, from the Durgin paper,

$$f_X(x) = \begin{cases}
\frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}, & x \geq 0 \\
0, & \text{o.w.}
\end{cases}$$

Since $g(x) = y = x^2$, then $g^{-1}(y) = \pm \sqrt{y}$. The derivative of the inverse function w.r.t. y is

$$\frac{\partial g^{-1}}{\partial y}(y) = \pm \frac{1}{2\sqrt{y}}$$

Plugging into the Jacobian formula,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right|$$

$$= \begin{cases}
\pm \frac{\sqrt{y}}{\sigma^2} e^{-\frac{y}{2\sigma^2}} \frac{1}{2\sqrt{y}}, & y \geq 0 \\
0, & \text{o.w.}
\end{cases}$$

$$= \begin{cases}
\frac{1}{2\sigma^2} e^{-\frac{y}{2\sigma^2}}, & y \geq 0 \\
0, & \text{o.w.}
\end{cases}$$

Which is the same as an exponential pdf with parameter $\lambda = \frac{1}{2\sigma^2}$. Note that the condition $\pm \sqrt{y} > 0$ in line simplifies to $y > 0$, and eliminates the possibility of $-\sqrt{y}$. Thus we can use only $g^{-1}(y) = + \sqrt{y}$.

Now, let’s find the distribution of $Z = 10 \log_{10} Y$. Finding the inverse, $y = g^{-1}(z) = 10^{z/10}$. Note that this can also be written,

$$g^{-1}(z) = \exp \left(\frac{z \ln 10}{10} \right)$$

Taking the derivative,

$$\frac{\partial g^{-1}}{\partial z}(z) = \frac{\ln 10}{10} \exp \left(\frac{z \ln 10}{10} \right) = \frac{\ln 10}{10} 10^{z/10}$$

Plugging in this into the Jacobian formula,

$$f_Z(z) = f_Y(g^{-1}(z)) \left| \frac{\partial g^{-1}(z)}{\partial z} \right|$$

$$= \begin{cases}
\frac{\ln 10}{20\sigma^2} 10^{z/10} e^{-\frac{1}{2\sigma^2} 10^{z/10}}, & \frac{\ln 10}{10} 10^{z/10} \geq 0 \\
0, & \text{o.w.}
\end{cases}$$

This is the log-Rayleigh distribution.
Now let’s use the same dB transform on X, that is, $W = 10 \log_{10} X$. We’ve already computed the inverse function and its derivative. Plugging into the Jacobian formula,

$$f_W(w) = f_X(g^{-1}(w)) \left| \frac{\partial g^{-1}(w)}{\partial w} \right|$$

(2)

$$= \begin{cases} \frac{10^{w/10}}{\sigma^2} e^{-\frac{1}{2\sigma^2} 10^{2w/10}} \ln 10 10^{w/10}, & 10^{w/10} \geq 0 \\ 0, & \text{o.w.} \end{cases}$$

$$= \ln 10 10^{w/5} e^{-\frac{1}{2\sigma^2} 10^{w/5}}$$

Finally, $W = Z/2$. Thus $z = g^{-1}(w) = 2w$, and its derivative is $\frac{\partial}{\partial z} g^{-1}(w) = 2$. Thus applying the Jacobian method and (2),

$$f_W(w) = f_Z(g^{-1}(w)) \left| \frac{\partial g^{-1}(w)}{\partial w} \right|$$

(3)

$$= \ln 10 20^{2w/10} 10^{w/10} e^{-\frac{1}{2\sigma^2} 10^{2w/10}} 2$$

$$= \ln 10 10^{w/5} e^{-\frac{1}{2\sigma^2} 10^{w/5}}$$

which is the same as (2) above.

2. From [Durgin 2002],

$$f_X(x) = \begin{cases} \frac{x}{\sigma^2} e^{-\frac{x^2 + V^2}{2\sigma^2}} I_0 \left(\frac{V x}{\sigma^2} \right), & x \geq 0 \\ 0, & \text{o.w.} \end{cases}$$

Letting $Y = 10 \log_{10} X$, we have the same inverse function as derived above. Plugging in this into the Jacobian formula,

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right|$$

(3)

$$= \frac{10^{y/10}}{\sigma^2} e^{-\frac{10^{y/5} + V^2}{2\sigma^2}} I_0 \left(\frac{V_1 10^{y/10}}{\sigma^2} \right) \ln 10 10^{y/10}$$

$$= \ln 10 10^{y/5} e^{-\frac{10^{y/5} + V^2}{2\sigma^2}} I_0 \left(\frac{V_1 10^{y/10}}{\sigma^2} \right)$$

This is the log-Rician distribution. Plots are shown in Figure 1.

3. Scatterers are uniformly distributed on the perimeter of a square, so consider one such scatterer as shown in Figure 2.

First, let’s find the CDF. This is the probability θ, the AOA of the path from the scatterer at the receiver, is between 0 and some other value, let’s call it t:

$$F_\theta(t) = P \left[0 \leq \theta < t \right]$$

The perimeter is uniformly likely, so the probability that $0 \leq \theta < t$ is the probability the scatterer is on the part of the perimeter with length labeled x. The probability is
Figure 1: Six different log-Rician probability density functions. Note that the mean shifts up when the total power increases, and the shape around that mean is determined by the K factor, $K = \frac{V_1^2}{\sigma^2}$.

Figure 2: A scatterer is uniformly randomly distributed along the perimeter of a square.
the length x divided by $4L$, the total length of the perimeter. Also, using trigonometry on Figure 2 and assuming $0 < t < \pi/4$, we know that $\tan t = \frac{x}{L/2}$, or equivalently $x = (L/2) \tan t$. Thus for $0 < t < \pi/4$,

$$F_\theta(t) = \frac{(L/2) \tan t}{4L} = \frac{1}{8} \tan t$$

The pdf is the derivative w.r.t. t,

$$f_\theta(t) = \frac{1}{8} \sec^2 t$$

Continuing for $\pi/4 < t < \pi/2$, we could use trig to find the total perimeter inside of the sector of $0 \leq \theta < t$ is

$$L - \frac{L}{2} \tan \left(\frac{\pi}{2} - t\right)$$

Thus for $\pi/4 < t < \pi/2$,

$$F_\theta(t) = \frac{L - (L/2) \tan \left(\frac{\pi}{2} - t\right)}{4L} = \frac{1}{4} - \frac{1}{8} \tan \left(\frac{\pi}{2} - t\right)$$

The pdf is the derivative w.r.t. t,

$$f_\theta(t) = \frac{1}{8} \sec^2 \left(\frac{\pi}{2} - t\right)$$

Beyond, for $t > \pi/2$, the pdf will repeat (it is the same geometry turned 90 degrees). Thus for all t I can say

$$f_\theta(t) = \begin{cases}
\frac{1}{8} \sec^2 \left(t \mod \frac{\pi}{2}\right), & t \mod \frac{\pi}{2} < \pi/4 \\
\frac{1}{8} \sec^2 \left(\frac{\pi}{2} - t \mod \frac{\pi}{2}\right), & t \mod \frac{\pi}{2} > \pi/4
\end{cases}$$

Figure 3: The AOA distribution is highest towards the corners, in this case, at $-3\pi/4$, $-\pi/4$, $\pi/4$, and $3\pi/4$ radians.

4. Your results may vary. I will post some examples later.