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ABSTRACT
This paper presents novel methodologies which allow ro-
bust secret key extraction from radio channel measure-
ments which suffer from real-world non-reciprocities and
a priori unknown fading statistics. These methodolo-
gies have low computational complexity, automatically
adapt to differences in transmitter and receiver hard-
ware, fading distribution and temporal correlations of
the fading signal to produce secret keys with uncorre-
lated bits. Moreover, the introduced method produces
secret key bits at a higher rate than has previously been
reported. We validate the method using extensive mea-
surements between TelosB wireless sensors.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NET-
WORKS]: General–Security and protection

General Terms
Security, Experimentation, Measurement, Performance

Keywords
bit extraction, radio channel, RSS

1. INTRODUCTION
For many applications of wireless sensor networks,

data privacy is a key requirement. Since sensor nodes
may be collecting private data, for example, in patient
health monitoring networks, users must have guarantees
of privacy. Without data privacy, patients will not be
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willing to participate and hospitals will not be in compli-
ance with confidentiality regulations. However, because
of the limited energy and computational resources of
sensor nodes, realistic methods for secure authentica-
tion and privacy face special challenges.

To meet the critical need for secure communications,
existing research has developed methods to address these
multiple challenges. Existing work uses predistributed
shared secret keys and public key methods adapted for
use on resource constrained sensor nodes. Various meth-
ods of probabilistic predistribution [3] [11] have bal-
anced security and limited on-device storage space. Pub-
lic key methods have used elliptic curve cryptography [12]
to create public keys within sensor node resources.

Unlike traditional cryptography methods, we address
the problem of secret key establishment between two
wireless sensor nodes for secure communication using
the time and space variations in the time-division duplex
channel. The radio channel offers a unique opportunity
to build alternate robust security solutions in a resource
efficient manner. A key generated from radio channel
characteristics [1] [9] [19] reflects the uniqueness of the
time and space in which it was created. Two nodes,
Alice and Bob, are able to measure a characteristic of
the channel between them, each generates a key from
those measurements, and then uses that key to encrypt
further communications. Even if Eve, an attacker, were
able to overhear legitimate users Alice and Bob during
the collection of channel measurements, Eve would be
unable to duplicate the key because she would not have
measured the same channel as that between Alice and
Bob.

Using temporal and spatial variation in channel char-
acteristics for secret key establishment is not a new idea.
Key generation from channel characteristics was first
described in [7]. Since then several existing efforts in-
cluding our own have designed and evaluated bit extrac-
tion schemes using many different channel characteris-
tics. Some of these characteristics are angle of arrival [1],
phase [7] [19], received signal strength [13] [9] [17], sig-



nal envelopes [2] [20] and level crossings [13]. Of these,
received signal strength (RSS), or channel gain, is most
commonly available because of the low device cost and
the requirement for inexpensive sensor nodes. To keep
the cost low and to be able to use off-the-shelf hardware,
we also use RSS in this paper.

Unfortunately, existing methods have significant prob-
lems achieving high bit generation rates when required
to achieve (1) a low probability of bit disagreement and
(2) uncorrelated bits. Existing methods sacrifice bit
generation rate to achieve low bit disagreement rates.
A low bit generation rate leads to high energy con-
sumption as nodes repeatedly probe the channel to ex-
tract sufficient bits. This severely limits the lifetime
of the node. The high rate uncorrelated bit extraction
(HRUBE) method can achieve a high rate of uncor-
related bits with a reliably low probability of bit dis-
agreement. However, it requires precise knowledge of
the distribution and the temporal statistics of the radio
channel. Sensor nodes are deployed in a wide variety
of environments so such a priori knowledge is unreal-
istic. Further, if statistical assumptions are made that
are incorrect, the benefits of the method are lost.

Here we present a method which comprehensively ad-
dresses these limitations. Our scheme implements a
ranking method to remove the non-reciprocities that
are inevitable as a result of wireless sensors having dif-
fering transceiver hardware characteristics. Ranking is
more robust because even when the measured values
at different nodes are of a different scale, the order of
the measurements will be the same. For example, the
method avoids the disagreements caused by differing
transmit powers and RSSI circuit variations. Even in
identical hardware, variations of scale exist, and with
different hardware, differences will be greater. Ranking
also makes the bit extraction process independent of
fading distribution. Further, we test and develop pro-
tocols which adaptively determine the covariance struc-
ture of the measured data in order to reliably extract
high entropy rate secret keys with a tunable probability
of bit disagreement.

We experimentally test our method using TelosB wire-
less motes. We evaluate and compare schemes using
data collected in three different environments in 25 data
sets, totaling 450,000 RSS samples. The extensive data
collection allows accurate characterization of important
figures of merit, including extracted bits per sample and
entropy rate. While the design of a robust and practical
scheme is the main objective of this work, we also find
that our scheme improves the rate at which secret bits
can be extracted. The tested method can extract 40
bits per second at a probability of bit disagreement of
0.04. Compared to the HRUBE bit extraction method,
this method is more robust to differences in hardware,

adapts to the channel environment, can be implemented
on a wireless mote and produces 30% more bits per sam-
ple. The tested method produces the highest secret key
extraction rate reported to date.

The rest of this paper is organized as follows. Sec-
tion 2 lays out the adversary model used in this pa-
per. In Section 3 we will describe the Ranking HRUBE
method. Section 4 describes our data collection pro-
cess. In Sections 5 and 6 we address issues related to
implementation on wireless sensors. Sections 7 and 8
contain a summary and discussion of our findings. Sec-
tion 9 forms a conclusion.

2. ADVERSARY MODEL
We assume that the adversary, Eve, can listen to all

the communication between Alice and Bob. Eve can
also measure both the channels between herself and Al-
ice and between herself and Bob at the same time when
Alice and Bob measure the channel between them for
key extraction. We assume that Eve is more than a few
wavelengths away from Alice or Bob. We also assume
that Eve knows the key extraction algorithm and the
values of the parameters used in the algorithm. We as-
sume that Eve cannot jam the communication channel
between Alice and Bob. We also assume that Eve can-
not cause a man-in-the-middle attack, i.e., our method-
ology does not authenticate Alice or Bob. In this aspect,
the technique of key extraction from RSS is compara-
ble with classical key establishment techniques such as
Diffie-Hellman [4], which also use message exchanges to
establish keys and do not authenticate Alice or Bob.

3. METHODOLOGY
Key extraction benefits from the reciprocity of the

channel gain (or loss) between two antennas and the
fluctuations of the channel gain in a non-static channel.
In a reciprocal channel, the multipath properties includ-
ing gain, phase shifts and delays are identical in both
directions of a link at any point in time. However, suc-
cessful key extraction must account for the sources of
non-reciprocities present in measurements of the chan-
nel gain, such as additive noise, and differences in hard-
ware. These non-reciprocities are the source of bit dis-
agreement, i.e. bits that do not match between the two
generated keys. In addition, a good key has uncorre-
lated bits, despite the fact that fading is a temporally-
correlated random process. The adaptive ranking-based
uncorrelated bit extraction (ARUBE) method uses four
tools to address these challenges:

1. Interpolation removes non-reciprocities caused by
the half-duplex nature of the channel.

2. Ranking reduces non-reciprocities caused by differ-
ing hardware characteristics and outputs data with
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Figure 1: (a) ARUBE bit extraction. (b) Areas of bit agreement and bit disagreement for m(i) = 1. (c) Spatial
correlation vs. Pbd and m

an a priori known distribution.

3. Decorrelation removes temporal correlation from
the RSS fading signal.

4. Quantization extracts bits from interpolated, ranked
and decorrelated RSS measurements.

A block diagram is shown in Figure 1(a). We expand
upon these steps in the following sections.

3.1 Interpolation
The half-duplex nature of the PHY layer (e.g., in

802.15.4) means that Alice and Bob are unable to si-
multaneously measure the channel gain. To compen-
sate we use a finite impulse response (FIR) fractional
delay filter, which interpolates to obtain an estimate of
the channel gains in both directions of the link at a sin-
gle point in time. The fractional delay between the ith

measurement by Alice, wa(i), and the ith measurement
made by Bob, wb(i), is,

µ =
1
2

[
τb(i)− τa(i)

T

]
(1)

where τb(i) and τa(i) are the arrival times of the ith

packet at Bob and Alice respectively.
We implement two fractional delay filters, one each at

Alice and Bob. W.l.o.g. we assume that τa(i) < τb(i)
so that µ > 0. If we interpolate points in wa so that
the ith sample is delayed by (1 + µ)T and interpolate
points in wb so that the ith sample is delayed by (1 −
µ)T , we would have nearly simultaneous measurements.
These delays can be broken down into fractional, µ, and
integer, n, delays. At each node:

µa = µ µb = 1− µ na = 1 nb = 0 (2)

We implement the cubic Farrow filter [5]. For c ∈ {a, b}:

hc =
[
µ3
c/6− µc/6,−µ3

c/2 + µ2
c/2 + µc,

µ3
c/2− µ2

c + 1,−µ3
c/6 + µ2

c/2− µc/3
]T

The filtered signal, xc, becomes the input to the next
step in the bit extraction process.

3.2 Ranking
Ranking is used to remove the differences in the un-

known transmitter and receiver characteristics which
differ between the two directions. As its output ranking
also produces values with a uniform distribution.

3.2.1 Motivation
As we note above, the channel gain is reciprocal, but

each receiver actually measures RSSI, a voltage in the
receiver IC. The RSSI has an affine relationship with
channel gain, denoted CG,

RSSI = c1CG + co (3)

and c1, c0 ∈ R depend on the two nodes. The parameter
c0 will vary due to differing transmit powers or differing
battery voltages at the two nodes. Both c0 and c1 vary
because the devices use different hardware or because
manufacturing differences in identical hardware [16].

The device parameters c0 and c1 can be considered
to be constant over the short periods time required to
generate a secret key from the channel (tens of seconds).
If the channel gain is reciprocal and the RSSI is given
by (3), ranking will recover identical signals.

The ranking process also homogenizes the output dis-
tribution. As will be discussed in Section 3.4, it is re-
quired to know the distribution of the data input into
the quantizer. Ranking does not provide a uniform dis-
tribution as input to the quantizer because decorrelation
is performed in between ranking and quantization; how-
ever, ranking does eliminate the changes that would oc-



cur based on the particular environment. For example,
narrowband fading statistics may be Ricean, Rayleigh,
or Weibull distributed [6], however, the distribution of
the output of the ranking operation will remain uniform.

3.2.2 Algorithm
Next, we describe how to perform ranking for the

ARUBE method. In short, we take each segment of K
values from the continuous-valued, interpolated chan-
nel measurements and output discrete-valued numbers
which indicate their order within the group of K. We
also use a set of known “dummy values” to increase the
randomness of the output of the ranking. However, for
introductory purposes, we first introduce ranking with-
out dummy values, and then define the process of rank-
ing with dummy values.

The input to the ranking operation are the K-length
sub-vectors x(t)

c , for c ∈ {a, b}. By sub-vectors, we
mean that channel interpolated channel measurements,
{xc(i)}i, are input to a serial-to-parallel converter that
outputs sub-vectors of length K, which we denote xc(t).
Specifically,

x(t)
c = [xc((t− 1)K + 1), . . . , xc(tK)]T (4)

Ranking is a function R : Zk → KK0 , where K0 is
a set of finite size with minimum 1 and maximum K.
When there are no“ties”in input data, K0 = {1, . . . ,K},
and xc(t) is ranked such that the jth element of the tth

ranked sub-vector is

r(t)c (j) = |{k : x(t)
c (j) > x(t)

c (k)}|+ 1

+
1
2
|{k 6= j : x(t)

c (j) = x(t)
c (k)}|

When there are no ties in the input data, r(t)c (j) is sim-
ply the order of x(t)

c (j) in a sorted list of x(t)
c . When

there are ties, the value of r(t)c (j) is the average of the
order of the tied values in the sorted list. For example,
for K = 5 and this particular xc, the vector rc would
be output from the ranking method,

xc(i)i = [13, 11, 10, 14, 11︸ ︷︷ ︸
x

(1)
c

, 12, 16, 17, 19, 15︸ ︷︷ ︸
x

(2)
c

, 18, 17]

rc(i)i = [4, 2.5, 1, 5, 2.5︸ ︷︷ ︸
r
(1)
c

, 1, 3, 4, 5, 2︸ ︷︷ ︸
r
(2)
c

]
(5)

If the number of input values of {xc(i)}i cannot be
evenly divided by K, the left over values are not used.

Next we describe the introduction of “dummy val-
ues” to add randomness to the output of our ranking
method. Ranking the measurements directly introduces
non-randomness that could possibly be exploited by an
attacker. If the first K − k measurements are known or
guessed, for k � K, it would be less difficult to accu-

rately determine the ranks of the remaining k measure-
ments. To avoid this problem, we introduce D dummy
values into the input stream. The ranking with dummy
values is a function R : Zk → KKD , where KD is a set of
finite size with minimum 1 and maximum K+D. When
there are no ties in input data, KD = {1, . . . ,K +D}.

In the ARUBE method, we determine D dummy val-
ues from D evenly spaced quantiles of the distribution
of {xc(i)}i. Specifically, we use F−1

xc

(
n−0.5
D

)
for n =

1, . . . , D, where Fxc (x) is the cumulative distribution
function (CDF) of xc. Note that values are found inde-
pendently at each node c ∈ {a, b}.

The jth element of the tth ranked sub-vector, r(t)c ,
becomes,

r(t)c (j) = |{k : x(t)
c (j) > d(t)

c (k)}|+ 1

+
1
2
|{k 6= j : x(t)

c (j) = d(t)
c (k)}|

where

d(t)
c =

[
x(t)
c

T
, F−1

xc

(
0.5
D

)
, . . . , F−1

xc

(
D − 0.5
D

)]T
(6)

3.3 Decorrelation
Adjacent channel measurements in rc are correlated.

In this paper we use the discrete Karhunen-Loéve trans-
form (KLT) to convert the measured, interpolated, ranked
channel measurements in ra and rb into uncorrelated
components. Given the covariance matrix of correlated
data the KLT looks for an orthogonal basis that decorre-
lates the data. If the data is Gaussian, the decorrelated
data will also be independent.

Assume that the input vector at node c ∈ {a, b}, rc,
has mean µc, covariance matrix Rr and length N . The
singular value decomposition (SVD) of Rr can be writ-
ten, Rr = USUT , where U is the matrix of eigenvectors,
and S = diag{σ2

1 , ..., σ
2
N}, is a diagonal matrix of the

corresponding eigenvalues. We assume that the eigen-
vectors have been sorted in order of decreasing eigen-
value, so that σ2

1 ≥ σ2
2 ≥ ... ≥ σ2

N ≥ 0. Note that
UTU = IN , where IN is the N × N identity matrix.
The discrete KLT calculates yc as

yc = UT (rc − µc). (7)

It can be shown that Ry, the covariance matrix of yc is
equal to S. Because S is diagonal, yc has uncorrelated
elements.

In Section 5 we discuss the online determination of Rr
and the setting of parameter N .

3.4 Quantization
There is a tradeoff between the probability of bit dis-

agreement, Pbd, and the number of bits generated. Multi-
bit adaptive quantization [17] (MAQ) achieves a high



rate of bits per sample for a desired Pbd.
W.l.o.g. we choose Alice to be the ‘leader’ and Bob

to be the ‘follower’. We first quantize ya(i) into one of
J , 2mi+2 = 4× 2mi equally likely quantization levels.
We determine the quantization levels based on the CDF
of ya(i), Fi(y) = P [ya(i) ≤ y]. The thresholds, ηj , are
calculated as,

ηj = F−1
i

(
j

4× 2mi

)
, for j = 1, . . . , J − 1. (8)

and η0 = −∞ and ηJ =∞.
The quantization bins are then defined by the thresh-

olds. The jth quantization bin is the interval (ηj−1, ηj)
for j = 1, . . . , J , so j(i) is given by

j(i) = max
j

[j : ya(i) > ηj−1] (9)

Next, we define the following binary variables:

• Define e(j), for j = 1, . . . , J as

e(j) =
{

1, (j mod 4) ≥ 2
0, otherwise

(10)

• Create a Gray codeword with mi bits, that is, an
ordered list of 2mi possible mi-bit codewords.

• Let f1(j) = b j−1
4 c. Define d1(j) ∈ {0, 1}mi to be

equal to the f1(j)th Gray codeword.

• Let f0(j) = b j+1 mod J
4 c. Define d0(j) ∈ {0, 1}mi

to be equal to the f0(j)th Gray codeword.

These variables are shown in Table 1 for m(i) = 1.
Multi-bit adaptive quantization proceeds as follows.

The leader node, Alice in this case, quantizes ya(i) in
the correct quantization k(i) for all components i. Alice
then transmits the bit vector e = [e(j(1)), . . . e(j(N))]T

to the follower node, Bob. Both nodes encode their
secret key using codeword d0 when e = 0, and codeword
d1 when e = 1. Specifically the secret key for node c is

zc = [de(j(1))(j(1)), . . . , de(j(N))(j(N))] (11)

where j(i) is given in Eq. 9. Figure 1(b) shows a graphic
representation of the m(i) = 1-bit case.

The Pbd in MAQ is related to the correlation coeffi-
cient between components and the number of bits ex-
tracted from each decorrelated component, ya(i). The
correlation coefficient of the ith component, denoted ρi,
can be determined from the covariance matrix of the
decorrelated components.

ρi =

√
[Ry]i,i
σ2
i

(12)

From the areas of bit disagreement in Figure 1(b), the
analytical approximation of bit disagreement rate vs. cor-
relation coefficient in Figure 1(c) is derived [17].

Table 1: m = 1 bit MAQ
Bin Codeword Interval

j f1 f0 e of y(i)
1 0 0 0 (−∞, F−1

i (0.125))
2 0 0 1 (F−1

i (0.125), F−1
i (0.25))

3 0 1 1 (F−1
i (0.25), F−1

i (0.375))
4 0 1 0 (F−1

i (0.375), F−1
i (0.5))

5 1 1 0 (F−1
i (0.5), F−1

i (0.625))
6 1 1 1 (F−1

i (0.625), F−1
i (0.75))

7 1 0 1 (F−1
i (0.75), F−1

i (0.875))
8 1 0 0 (F−1

i (0.875),+∞)

The greater the correlation between components the
more bits that can be extracted or the lower the percent-
age of bit disagreement. The total number of bits ex-
tracted from each group of decorrelated measurements,
yc is denoted M =

∑N
i=1m(i).

4. EXPERIMENTAL DATA COLLECTION
For purposes of evaluation, we implement three wire-

less sensors capable of collecting RSS measurements.
The TelosB mote is a low power wireless sensor module
equipped with an IEEE 802.15.4 compliant RF transceiver
(the TI CC2420), built-in antenna and a micro-controller.

TinyOS/NesC software is written for the TelosB motes
for measurement and communication. Nodes Alice (a)
and Bob (b) take turns transmitting probing packets.
Each probing packet contains a counter value and a
unique node id number. When node c ∈ {a, b} receives
the ith packet, it (1) obtains the RSS of the packet, wc,i;
(2) stores the received counter value i and the RSS value
wc,i; (3) increments its local counter value and (4) builds
a new data packet containing the new counter value and
its own node ID and sends it over the radio to node c̄
where c̄ ∈ {a, b} and c̄ 6= c.

The packet transmission rate of the device, and thus
the RSS sampling rate, is 50 per second. The third node,
Eve, designated the attacker node, overhears all of the
packets being transmitted between the other two nodes,
estimates the RSS of each packet and stores the data.
Eve’s TelosB mote does not transmit any packets. Data
is collected on a laptop to enable arbitrary application
of the RSS measurements in secret key establishment.

We collected 25 datasets with a total of 443, 600 sam-
ples. Most datasets had between 10,000 and 20,000 RSS
samples while a few datasets had more than 50,000 or
less than 5,000. At 50 samples per second it takes 5 min-
utes to collect 15,000 samples. The nodes were arranged
in various geometries to evaluate the ability of Eve to
obtain the same key as Alice and Bob and to see how
the signal to noise ratio (SNR) might affect the meth-
ods. For all datasets, Alice and Eve were placed on a



flat surface while Bob was rotated and moved randomly
by an experimenter to introduce random fading into the
channel. In the 16 datasets where Eve was present, she
was at most 45cm from Alice and in few cases she was
less than 6.25cm or λ

2 from Alice. Six datasets were col-
lected where Bob was more than 1.5m from Alice and
Eve. All signal processing was done in Python.

5. ENABLING CHANNEL ADAPTATION
In [17] the authors presented HRUBE, a framework

for bit extraction from channel measurements, but did
not have a realistic method for implementation. This
section presents methods to select the parameters of the
ARUBE method. These parameters include the number
of decorrelated components, N , the decorrelation ma-
trix, U , and the number of bits per component, {m(i)}i.
The selection of these parameters depends upon the ra-
dio channel between Alice and Bob. For example, in a
quickly varying channel we would expect the covariance
matrix to be different than in a slowly varying channel.
Also, the number of bits extracted from the channel
would increase with signal to noise ratio.

5.1 Previous Approach
In the HRUBE method, the covariance matrix, Rx,

was estimated as

R̂xc,xc =
1

2C − 1

∑
c∈{a,b}

C∑
i=1

(x(i)
c − µ̂c)(x(i)

c − µ̂c)
T

(13)
where x(i)

c is the ith N -length measured RSS vector at
node c, C is the total number of vectors and

µ̂c =
1
C

C∑
i=1

x(i)
c . (14)

The N×N decorrelation matrix U is found by the SVD.
The values, m(i), were determined from the covariance
matrix of xa and xb. The secret key, zc, was then ex-
tracted from the same measurements as were used to
estimate the covariance matrix.

5.2 Selection of N
The computational complexity of estimating the co-

variance matrix and calculating the SVD are both de-
pendent upon N as will be discussed in Section 6. In-
creasing N will decrease temporal correlation between
bits in the secret key because more samples are simul-
taneously decorrelated. For example, setting N = 50
produced sufficiently decorrelated bits for the HRUBE
method [17]. Because of the tradeoff between computa-
tional complexity and temporal decorrelation, finding a
minimum range or value for N could significantly reduce
the number of calculations.

In order to test for uncorrelated bits, we look at two
types of correlation coefficients:

1. Pair-wise bit correlation coefficients. We denote
ρzi,zj

as the correlation coefficient between the ith

and jth component of vector zc (Eq 11), for any
particular combination (i, j) where i 6= j. There
are

(
M
2

)
different values of ρzi,zj .

2. Global bit correlation coefficient. We denote ρz as
the correlation coefficient between any pair of dif-
ferent components of zc. Here we assume that the
correlation coefficient is identical across all combi-
nations of (i, j) and we use our data to estimate
the single value of ρz.

There are
(
M
2

)
different pairwise correlation coefficients,

ρzi,zj
, but because there are more of them, each one is

estimated with few realizations, which we denote as n.
The global bit correlation coefficient, ρz, is a single num-
ber but it has many more realizations, n. By performing
statistical tests on both correlation coefficients, we can
reliably verify that bits are uncorrelated.

To avoid confusion, it should be noted that we now
have two types of correlation, spatial and temporal.
The first, spatial, is ‘good’ correlation (Eq 12 and Fig-
ure 1(c)) between the decorrelated components ya(i)
and yb(i). This spatial correlation is what makes bit
extraction effective. The second describes temporal cor-
relation between bits. Both ρzi,zj

and ρz quantify tem-
poral correlation that might allow an attacker to have a
better chance of guessing subsequent bits given knowl-
edge of some bits. We quantify the effect of N on tem-
poral correlation in this section.

Estimated correlation coefficients will never be pre-
cisely zero, even if ρ = 0. We use hypothesis tests
to quantify if these non-zero correlation coefficients are
likely to have been generated if the true ρ = 0. Formally,
the decision is:

H0 :ρ = 0
H1 :ρ 6= 0

(15)

The hypothesis test is performed on the t statistic [8],

t = ρ̂

√
1− ρ̂2

n− 2

H1
>
<
H0

γ (16)

where ρ̂ is the correlation coefficient estimated from the
data either ρzi,zj or ρz, n is the number of realizations
used in the estimate and γ is a threshold. The thresh-
old is set by choosing a desired false alarm rate, α, and
applying knowledge of the distribution of t (t distribu-
tion with n − 2 degrees of freedom). In the limit for
high n (n > 100) the distribution of t approaches the
zero-mean unit-variance Gaussian distribution.



We plot the t-statistics vs. N and the appropriate
thresholds for three datasets in Figures 2 and 3. Each
dataset has many pairwise correlation coefficients, so for
simplicity we plot only the maximum pairwise correla-
tion coefficients in Figure 2. For the datasets presented
here, the minimum number of realizations is n = 833.
We set the false alarm probability, α = 0.05, therefore
we would expect even if ρ = 0 to see 5% of the values
crossing the threshold. In all plots the target Pbd = 0.04,
K = 256, and D = 128.

As shown in Figure 2, for N ≥ 15 the datasets u, s
and t decide H0 more than 1−α = 95% of the time. The
global correlation, ρz, as shown in Figure 3, is dependent
upon the dataset. H0 is decided for datasets u, s and
t at N = 27, 25, 17 respectively. Based on the tests
of ρzi,zj

we may believe N > 15 is sufficient, however,
because of the tests on ρz, we may wish to set N > 30.

We also tested the effect of N on the number of bits
extracted per sample. We tested the total number of
bits per sample for a range of 5 ≤ N ≤ 50 and over
the same three datasets. We found that the choice of N
does not have a significant effect on the number of bits
extracted per sample.

In addition, we tested the entropy of the bitstream
vs. N . For N larger than 15, entropy slowly increases
with N . These results are presented in Table 6.
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Figure 2: t-statistics for max ρzi,zj
vs. N for three

datasets and the threshold, γ.

5.3 Covariance Matrix and Correlation Coef-
ficient Estimation

In the previous section we looked at the effect of N
on temporal correlation when the covariance matrix was
estimated as in Eq. 13. In other words, the covariance
matrix was estimated using all measurements made in
both directions. If this were implemented, it would take
many minutes to collect all of the RSS measurements.
Alternatively the covariance matrix would be estimated
and the KLT performed for every vector of samples col-
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Figure 3: t-statistics for ρz, vs. N for three datasets and
the threshold, γ.

lected. In either case, it would either computationally
expensive or introduce high latency.

We see three options in addition to the full method
for calculating the covariance matrix:

1. Full: The covariance matrix is estimated on the
nodes for all vectors of collected channel measure-
ments using Eq. 13. The SVD of the covariance
matrix is calculated on each node and the decor-
relation matrix, U , is found.

2. Offline: The covariance matrix is estimated offline
from previously collected data, the SVD of the co-
variance matrix is calculated and then the decor-
relation matrix, U , is loaded onto both nodes prior
to deployment.

3. Uni-directional: The covariance matrix is estimated
by each node using only the measurements it has
collected. In this case the covariance matrices at
Alice and Bob would be,

R̂ra,ra
=

1
C − 1

C∑
i=1

(r(i)
a − µ̂a)(r(i)

a − µ̂a)
T

R̂rb,rb
=

1
C − 1

C∑
i=1

(r(i)
b − µ̂b)(r

(i)
b − µ̂b)

T

4. Partial: Alice and Bob collect and shareNc prelim-
inary channel measurements, wpa and wpb. Both
vectors are interpolated and ranked then the co-
variance matrix is estimated at both nodes using
the preliminary bi-directional data,

R̂rc,rc̄
=

1
Nc − 1

[
Nc∑
i=1

(r(i)
pa − µ̂pa)(r(i)

pa − µ̂pa)
T

+
Nc∑
i=1

(r(i)
pb − µ̂pb)(r

(i)
pb − µ̂pb)

T

]
(17)



Table 2: t-statistics by method

Method ρzi,zj ρz
N=17 N=3 N=17 N=35

Full 2.950 3.369 1.864 0.444
Offline 2.825 2.194 0.533 1.159
Uni-directional 2.950 3.196 1.978 0.589
Partial Nc = 1000 2.201 2.828 0.228 0.926
Partial Nc = 2000 2.952 2.851 0.366 1.440

The SVD of the covariance matrix is calculated on
each node to obtain U .

The advantages of each method are as follows. The
full method will decorrelate the measurement vectors
better than the other three, but is expensive in terms of
time and computation. The offline method is much less
computationally intensive since the KLT is not calcu-
lated online, but does not adapt to changes in the radio
channel. The uni-directional method requires no addi-
tional data sharing between the two nodes other than
probe packets and MAQ protocol, but is as computa-
tionally expensive as the the full method. The partial
method, while more computationally expensive than the
offline method, can adapt to changes in the wireless
channel because it decorrelates the bit stream immedi-
ately after calculating U .

To determine the effect of these four methods on tem-
poral correlation we take one of the datasets, u, which
was also used in the previous section and run the same
hypothesis tests. Table 2 shows that none of the four
methods results in correlation coefficients ρzi,zj

or ρz
which are significantly different than zero. For all meth-
ods, Pbd = 0.04, K = 256 and D = 128.

The effect of the covariance estimation method on the
bits extracted per sample is also of concern. On average
the partial method extracted 5% fewer bits per sample
than did the offline, full or uni-directional methods. For
the offline method we used dataset r as the dataset to
compute the decorrelation matrix U . Dataset r was
collected in similar channel conditions as dataset u.

Rarely, the uni-directional method produced as much
as 40% fewer bits per sample. This method suffers from
the fact that the U matrix can be highly sensitive to
noise. This is because the order of the eigenvectors and
the sign of the eigenvectors can be different at Alice and
Bob. Other methods guarantee U will be identical at
both nodes.

To determine the number of bits to extract from each
component, Alice and Bob must know the correlation
coefficients ρ(i) (Eq. 12). In the uni-directional method,
Alice and Bob cannot determine the correlation coeffi-
cients. In addition, in the offline method the values of
the correlation coefficients are virtually certain to vary
with differing channel conditions. In these two cases,

Alice and Bob could do one of two things:

1. Make a conservative guess based on a metric like
signal to noise ratio.

2. Exchange a subset of the decorrelated components,
yc, and use them to calculate the correlation coef-
ficients similar to the partial method.

Although it would be cheaper both in terms of com-
putation and time if the SVD was calculated offline, it
would leave the nodes without any means of calculating
a new U matrix or correlation coefficients if the nodes
were deployed in an environment with significantly dif-
ferent wireless characteristics than the previously gath-
ered samples. To allow adaptation, we use the partial
method in the rest of this paper.

6. ARUBE PROTOCOL

Figure 4: Packets sent for channel probing (—>) and
data transfer (- - ->), computation (boxes) at either
node, for overhead and bit extraction.

In this section we describe the ARUBE protocol and
find the number of transmissions necessary to extract a
secret key of length Lk. Figure 4 shows a diagram of
the protocol.

At a high level, the protocol has two parts separated
by the dotted horizontal line in Figure 4. In the first



part (steps 1-3 in Figure 4) the two nodes estimate the
covariance matrix and calculate the decorrelation ma-
trix, U , and the bit vector, m. In the second part (steps
4-7) the nodes measure the channel and using U and m,
extract bits for a secret key. The second part can be
repeated as many times as necessary to obtain the de-
sired number of bits in the secret key. The process can
be described as follows:

1. Alice (the leader) and Bob (the follower) exchange
Nc packets. The packets contain the RSS value
of the last received packet at the respective node
so that both nodes have a copy of the preliminary
RSS measurement vectors.

2. Alice and Bob rank and interpolate both vectors.

3. Both nodes estimate bi-directional covariance ma-
trix, calculate the SVD to find the decorrelation
matrix, U , and the bit vector, m.

4. Alice and Bob exchange K probing packets which
contain no data. After packets are exchanged, Al-
ice has a vector of RSS as measured from Bob to
Alice and Bob has a vector of RSS as measured
from Alice to Bob.

5. Alice and Bob interpolate, rank and decorrelate
their RSS vectors to obtain ya and yb respectively.

6. Alice quantizes ya to obtain the secret key, za, and
the e-vector. She sends the e-vector to Bob.

7. Bob, upon receipt of the e-vector from Alice, quan-
tizes yb to obtain the secret key zb.

The fourth through seventh steps are performed un-
til the secret key is of desired length. If the channel
changes substantially or the percentage of bit disagree-
ment is higher than expected, the first three steps can
be performed again to obtain an estimate of current
channel statistics.

With the ARUBE protocol in mind we determine the
number of transmissions needed to create a shared secret
key of length Lk. We define the constants

Nc = Samples required to calculate R̂rpa,rpb

N = Length of vector to be decorrelated
K = Number of samples to rank
Be = Bits extracted per sample

We calculate the number of transmissions required to
generate a key of length Lk and the computational com-
plexity of each step with respect to N , K and Nc. The
number of bits extracted per sample, Be, is dependent
upon the environment where the bit extraction is per-
formed.

Table 3: Number of Packets Transmitted
Be Node Overhead Key 1 Key 4 Key 7

0.4 Alice 1000 1263 2052 2841
Bob 1000 1256 2024 2792

0.75 Alice 1000 1264 1800 2336
Bob 1000 1256 1768 2280

6.1 Packet Transmissions
Table 3 shows the number of packets transmitted when

Lk = 128, Nc = 1000, K = 256 and Be = [0.4, 0.75] as
the number of keys created increases. The number of
packets transmitted is

Nt = Nc +
(⌈

Lk
BeK

⌉
K +G

)
(18)

Where G is the number of packets required for Alice to
transmit the e-vector. G is dependent on the number of
bits in a packet, P , and the number of components in yc
from which bits can be extracted Mn = |{i : m(i) 6= 0}|.

G =
Lk
M
Mn

1
P

(19)

The number of bits extracted per sample, Be, has the
greatest effect on the number of packets transmitted.
The transmissions above the dotted horizontal line in
Figure 4 are overhead and are independent of the num-
ber or length of secret keys to be generated. The amount
of transmission overhead is dependent only upon Nc.
While the leader and follower nodes transmit nearly the
same number of packets, the leader node will transmit
more over time because of the e-vector packets.

6.2 Computational Complexity
The gray boxes in Figure 4 indicate computations that

are done on each respective node. The computational
complexity of each step is listed in Table 4.

While the calculation of the SVD has the highest or-
der of any operation, it may be possible to simplify the
order. For example only Mn = |{i : m(i) 6= 0}| of
eigenvectors need to be calculated. If Mn ≤ N it can
be less computationally complex to calculate one eigen-
vector at a time and stop extracting eigenvectors when
m(i) = 0. Depending upon the number and length of
keys to be generated, the covariance matrix estimation
and calculation of the SVD might not be the most sig-
nificant portion of the required computation although
they have the highest order.

Although an exact comparison is difficult, we expect
ARUBE to extract secret bits with fewer computations
in comparison to the Diffie-Hellman secret key exchange.
The main computation for the Diffie-Hellman scheme is
the modular exponentiation, (ga mod p)b mod p [14].
Here, p is a large prime number, g is the generator of



Table 4: Computational Complexity
Overhead Complexity

Interpolate O(Nc)
Rank O(NclogK)

Calculate R̂xpa,xpb
O(N2Nc)

Calculate SVD O(N3)
Bit Extraction Complexity

Interpolate O(K)
Rank O(KlogK)

Decorrelate O(NK)
Quantize O(K)

the order of p − 1, in the group < Z∗p,× >, and a
and b are the secrets of Alice and Bob, respectively.
This modular exponentiation has a time complexity of
O(nM(k)) where n is the number of bits in p, k is
the number of bits in a or b, and M(k) is the com-
plexity of a chosen multiplication algorithm. Using the
Karatsuba algorithm for multiplication [10], M(k) =
O(k1.585). The time complexity of the ARUBE bit ex-
traction steps is O(NK). Considering k and K to be
constant, and noting that a smaller symmetric key is
equivalent in strength to a much larger Diffie-Hellman
Key (e.g., 112-bit symmetric key is equivalent to 2048-
bit Diffie-Hellman key [15]), ARUBE is computationally
more efficient than the Diffie-Hellman key exchange.

7. RESULTS
In this section we quantify the performance of the

ARUBE method. We look at three metrics: (1) secret
bits per sample; (2) estimated entropy rate of secret key
bits; and (3) resistance to a passive attack.

Secret Bits per Sample: The number of secret key
bits generated per sample directly impacts the latency
and energy efficiency of key establishment. Figure 5
plots ARUBE (and for comparison, HRUBE) secret bits
per sample vs. Pbd for N ∈ {17, 35}, K ∈ {128, 256},
and D = K

2 . We assume the best case the HRUBE
method, that it estimates the U and {m(i)}i on the
same data set which it then uses to extract bits. Out of
25 data sets, we plot the average of the top three with
respect to bits extracted per sample, the average of the
bottom three and the average remaining 19 datasets.

We show a comparable analysis with the same datasets
for a bit extraction method developed by Mathur et al.
[13] in Table 5. Unlike ARUBE, this method was devel-
oped solely to produce keys with Pbd = 0, with no expec-
tation of information reconciliation. This method finds
extrusions in a filtered vector of RSS measurements. An
extrusion is where the values of a filtered RSS vector are
above some threshold γ or below −γ. If an extrusion is
at least m measurements long and exists on both direc-

Table 5: Bits per sample–Mathur et al.
Pbd ≤ 0.0 0.0025 0.01 0.04 0.07
Best 0.074 0.077 0.082 0.088 0.089

Middle 0.055 0.064 0.072 0.074 0.076
Worst 0.0 0.032 0.05 0.057 0.057

Table 6: Average and Minimum Entropy Rates.
N = 17 N = 35

Method Mean Min Mean Min
ARUBE 0.9808 0.9653 0.9833 0.9757
HRUBE 0.9767 0.9433 0.9825 0.9712

tions of the link, it will be assigned as a 1 if it is above
γ, or as a 0 if it is below −γ.

To find the values in Table 5 we selected many values
of γ between 0.1σ ≤ γ ≤ 1.5σ where σ is the stan-
dard deviation of the filtered RSS vector, and found
the maximum bits per sample that could be generated
which had a Pbd less than a given value. Table 5 shows
the average for the best three, worst three and remain-
ing 19 datasets. While this method requires much less
computation than ARUBE and unlike similar extraction
methods produces keys with high entropy, the number
of bits extracted per sample is very low. Even at small
Pbd, ARUBE produces 4 times more bits per sample and
up to 9 times more with larger Pbd.

Entropy Rate: We estimate the entropy rate of the
generated secret key bits, i.e., a quantification of the un-
certainty of the bit sequence. If generated bits are per-
fectly independent, they should achieve an entropy rate
of 1. Although it is not sufficient for a secret key to have
a high entropy in order to be secure, it is necessary. We
generate bits from datasets using Pbd = 0.04, K = 256,
and D = 128, and then estimate the entropy rate using
the approximate entropy test in the NIST’s statistical
test suite for random number generators [18]. The av-
erage and minimum values over 23 of the 25 datasets
are listed in Table 6. The remaining two datasets had
< 500 bits, not enough to estimate entropy.

Evaluation of Possible Attacker Success: In this
paper we take a straight-forward, if simplistic, view of
the ability of an eavesdropper to obtain Alice and Bob’s
secret key. We provide one way to see how the ARUBE
and HRUBE methods perform when under attack from
a passive listener. For both methods, Eve performs
bit extraction in the same manner as Alice and Bob.
Eve overhears the Nc preliminary measurements and
the RSS values contained within the packets sent be-
tween Alice and Bob to find U and {m(i)}i. We assume
Eve knows the constants N , K and Pbd that Alice and
Bob use for bit extraction. The average percentages
of bits Eve gets correct for the HRUBE and ARUBE
methods over the 16 datasets (where Eve was present)



K=128 K=256

N
=

17

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Target Bit Disagreement Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
e
cr

e
t 

b
it

s 
p
e
r 

sa
m

p
le

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Target Bit Disagreement Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
e
cr

e
t 

b
it

s 
p
e
r 

sa
m

p
le

N
=

35

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Target Bit Disagreement Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
e
cr

e
t 

b
it

s 
p
e
r 

sa
m

p
le

0.01 0.02 0.03 0.04 0.05 0.06 0.07
Target Bit Disagreement Rate

0.0

0.2

0.4

0.6

0.8

1.0

S
e
cr

e
t 

b
it

s 
p
e
r 

sa
m

p
le

Figure 5: Target Pbd vs. secret key bits per sample for ARUBE (black lines) and HRUBE (gray lines), forN ∈ {17, 35},
K ∈ {128, 256}, and D = K

2 , for averages of the best three datasets (-•-), the worst three (-�-), and the remaining
19 (-N-).

Table 7: Percentage of bits Eve gets correct.
Method Compared to Alice Compared to Bob
ARUBE 50.19 50.53
HRUBE 50.64 50.76

are compared in Table 7.

8. DISCUSSION
Assuming the best case for the HRUBE method, that

it estimates the U and {m(i)}i on the same data set
which it then uses to extract bits, we see that the ARUBE
still outperforms the HRUBE. Both the ARUBE and
HRUBE methods are resistant to a passive evesdrop-
per, as shown in Table 7. The ARUBE method achieves
higher entropy than the HRUBE method, and increas-
ing N from N = 17 to N = 35 also increases the esti-
mated entropy rate for both methods (Table 6).

ARUBE generates up to 60% more bits compared to
HRUBE method (Figure 5) for low Pbd. For K = 256
and D = 128, the ARUBE achieves up to 25% more
bits for medium and high Pbd. For most datasets, the
ARUBE achieves higher bit rate at a given Pbd. The

greatest improvements occur in datasets with high SNR.
The performance improvement is seen for both N = 17
and N = 35. We note that setting K too low reduces
the benefit of the ARUBE method, e.g., for K = 64 the
two methods are approximately equivalent.

Note that K can be set to an arbitrary integer. For in-
stance, if Be = 0.8 and the desired key length is 128 bits,
it would be faster to collect and rankK = 1

0.8∗128 = 160
samples. After U is determined, at 50 samples per sec-
ond, it would take a wireless sensor 3.2 seconds to collect
the required 160 samples for the secret key.

9. CONCLUSION
We presented a new method of secret key generation,

ARUBE, that adapts to the radio channel environment
and the characteristics of the two wireless sensors in
use. Further, for medium and high SNR channels, the
ARUBE produces more bits per sample, thus reducing
the number of transmissions (energy) required to pro-
duce a given length secret key. In comparison with the
HRUBE, another uncorrelated bit extraction method,
ARUBE extracts 30%-60% more bits in situations with
high SNR. ARUBE is shown to produce uncorrelated



bits, is resistant to a simple passive eavesdropper, and
secret keys have an entropy rate above 0.97. The num-
ber of packet transmissions and computational complex-
ity are presented.

Future work should test simplifications and imple-
mentations of ARUBE. Algorithms to reduce the com-
putational complexity of the KLT exist and should be
tested. The offline version of ARUBE is implemented in
TinyOS, and current work is implementing the complete
method.
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