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Abstract—The ability for special operations forces (SOF) to
rapidly deploy a through-building tracking system upon arrival
at a tactical operation, e.g. a hostage scenario, and thereby
estimate the approximate locations of the people within the
building has the potential to lower the risk of the operation
and save lives. We study the feasibility of a rapidly deployed
radio frequency (RF)-based tomographic imaging (RTI) system
for use in tactical operations by Special Weapons and Tactics
(SWAT) and other SOF, in which several low-power radio devices
are placed around a building and used to image and track the
motion of humans inside the building. Specifically, we identify
and study the constraints of this application, such as the need
for the sensor network to self-localize and self-calibrate with
minimal input from the SOF. We implement and test, in a wide
variety of experimental deployments, a real-time RTI tracking
system which adheres to these constraints and provides valuable
situational intelligence. We work in concert with local law
enforcement and SWAT in order to obtain valuable feedback
from end users. We show that our system is capable of providing
useful tracking information (average errors of less than two
meters) even when the self-localization results are inaccurate (up
to three meters average error).

I. INTRODUCTION

This report describes progress in determining the feasibility
of a new radio frequency (RF)-based technology for through-
building surveillance, specifically, determining the positions of
people inside a building using sensors placed only on the out-
side of the building. The enabling technology, RF tomographic
imaging (RTI), uses a network of small, inexpensive wireless
devices, placed around an area, to make measurements and
estimate where people and objects are currently located in the
area [10], [16], [20], [7], [12], [23], [8], [4], [6]. By using radio
waves, the devices are able to image through walls, smoke,
and other obstructions [19], [22], a major advantage over light
and infrared. We introduce the fundamentals of RTI in Section
II-A. The “see through walls” capability of RTI opens the door
for many emergency response applications in which situational
awareness is critical to save lives.

In this work we investigate the application of these technolo-
gies to a system for use in emergency response, specifically, for
SWAT and military special operations forces (SOF). Consider
the scenario of a SWAT team responding to a hostage situation.
Upon arrival at the scene, golf-ball-sized RTI radios are

placed, thrown, or tactically launched (from an M-32 or M203
launcher) around the building. Depending on the scenario,
these might land on the ground, or be deployed so that they
stick to the outside wall of the building. Once deployed, the
radios communicate and form a peer-to-peer network. After
the radios self-locate and form an accurate map of their own
locations, they continuously measure received signal strength
(RSS) on all of the pair-wise links in the network. The
measurements are collected and processed in real-time to show
the tracks and current locations of moving people and objects
in the environment. This data from our system represents
significant situational intelligence which may help save lives
during the course of the SWAT operation. For example, SWAT
commanders could decide which part of the building is furthest
from people and thus may be their safest point of entry.

This paper details feasibility studies for a robust, rapidly de-
ployable, commercial RTI system. In contrast to experimental
research tests in which sensors are hand-placed, mapped, and
manually calibrated, in a tactically-deployed system, sensors
must self-localize, self-calibrate, and the network must auto-
matically form and start to measuring RSS.

The sensors must self-localize because many tactical oper-
ations are time-critical, and SOF cannot take the time to map
the locations of the nodes. Additionally, precisely measuring
the node locations may put SOF personnel at risk.

The network must self-calibrate regardless of the number
of people already present within the building being monitored.
Previous RTI methods [19], [22] have required empty-building
calibration measurements in order to generate accurate track-
ing results, but empty-building calibration measurements may
not be possible in many tactical operations. Additionally, since
our system can measure RSS on multiple wireless channels,
a part of the self-calibration process involves deciding which
channels represent the best source for tracking measurements
in real-time.

We show that these capabilities are feasible, that robust
localization performance can be achieved, and that a complete
system with these capabilities would be very compelling for
end users. In summary, a through-building surveillance system
with the capabilities we demonstrate are feasible would be
used by SWAT and other SOF, and would help save lives.



Specifically, our report describes the following achieve-
ments towards a complete RTI tracking system that could be
operated and used by SOF:

• We implement in real-time kernel distance-based ra-
dio tomographic imaging (KRTI), an RTI method that
has improved performance compared to previously re-
ported attenuation-based RTI [18] and variance-based RTI
(VRTI) [19], [22]. We describe KRTI and its performance
in Sections II-A and IV-A.

• Since sensors must self-localize using a combination of
GPS, received signal strength (RSS) measurements, and
minimal user input, before they can estimate the positions
of people in the environment, we study the effects of poor
self-localization on tracking performance. Surprisingly,
we find that the performance of KRTI degrades gracefully
as the sensors’ self-localization errors increase. This
result is discussed further in Section IV-B.

• We implement and test a particular sensor self-
localization method, called distributed weighted multi-
dimensional scaling (dwMDS) [1], [2] that combines
GPS, RSS, and building layout information for sensor
self-localization. We describe dwMDS in Section II-B
and show in Section IV-B that our experiments yield
an average sensor self-localization accuracy of about 1.5
meters.

• We implement two types of sensor self-calibration. First,
the KRTI system must know the histogram of RSS values
on each link. We show this can be calculated in real-time
from RSS data, without requiring any “empty-building”
calibration. Empty-building calibration is impossible in
emergency response applications, but has been used in
most previous research [10], [18], [17]. Second, we
choose upon deployment the best frequency channel for
each link according to its fade-level. These two self-
calibration methods are discussed in Section II-C.

• We examine the use of directional antennas for through-
building KRTI. We find that equipping sensors with direc-
tional antennas, compared to omni-directional antennas,
reduces average tracking error further, by as much as
22%. This result is described in Section IV-C.

• Finally, we study the effects of using different sized
networks for KRTI and find that the number of sensors
can be dramatically reduced compared to the 30 or
more used in previous research [18], [22]. With only ten
sensors, accurate localization (less than 1 meter RMSE)
can be achieved. This development is described in Section
IV-D.

In summary, we show that a tactically deployed RTI system
with a small number of sensors can perform sensor self-
localization with minimal input from end users, can self-
calibrate, and still provide high accuracy localization and
tracking of people in a variety of experimental deployments.
In addition, we collaborate extensively with local SWAT order
to get feedback on system deployment and usability. End user
observations of a testbed deployment are described in Section

IV-E.

II. METHODOLOGY

In this section we introduce the RTI method we implement
to produce the images used to track human motion. Next, we
discuss the method we use to allow the nodes to self-localize.
Finally, we discuss network self-calibration.

A. RTI Implementation

Several methods for RTI-based location tracking have been
introduced over the past few years [21], [15], [9], [12]. In
[18], the authors measure the average RSS on each link while
the tracking area is empty and then determine where a people
are in the network based on changes in the RSS values for
each link. In [19], the authors monitor the variance of the
RSS on each link in order to localize motion in the network.
This method has the benefit that it does not require offline
calibration, but it cannot detect stationary targets.

Recently a new RTI method, kernel distance radio-
tomographic imaging (KRTI) [23], [13], was introduced which
detects stationary and moving targets without the need for
offline calibration. KRTI uses a kernel distance metric to quan-
tify the difference between two histograms of RSS measure-
ments for each link in order to track people within the network.
Using histograms of RSS measurements combines the benefits
of the methods presented in [18] and [19], quantifying changes
in both the mean and the variance of RSS measurements for
each link. An example of the images generated with KRTI and
used for tracking is shown in Figure 1. The hot point in the
image represents the position of the person being tracked.

In KRTI, a long-term histogram is used as a baseline, while
a short-term histogram is used to track recent changes in RSS
on each link. When applied to these two histograms for a given
link, the kernel distance metric is an indicator of motion on or
near the link. The results we present in this work rely on KRTI
in order to perform tracking because it is well-suited to hostage
and barricade situations, in that it does not require empty-
building calibration measurements and is capable of running
in real-time. We note that a background subtraction method
like the one presented in [3] is also capable of determining
these distributions without empty-building measurements, but
includes more computational complexity.

B. Sensor Network Self-Localization

The proposed tracking system requires knowledge about the
relative locations of the radio transceivers deployed around
the building within which the human targets are to be tracked.
More precise node localization leads to more accurate tracking,
which would be valuable to end users like SWAT. Since a
SWAT team may not have the time or be willing to put their
personnel at higher risk in order to precisely measure out the
node locations, the nodes should self-localize and begin to
track people within the network with little or no help from
the team deploying the system.

There are several methods in the literature for localizing
radios. They typically use the time of arrival (TOA) or
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Fig. 1. Example image for multi-channel KRTI.

received signal strength (RSS) of radio transmissions in order
to estimate inter-node distances [11]. An ordination technique
like multi-dimensional scaling (MDS) [2] can then be applied
to find a map of sensors that best fits the measured inter-node
distances.

In this work, we implement and augment a type of
MDS called distributed weighted multi-dimensional scaling
(dwMDS) [2], an ordination method which, given a noisy
set of inter-point distances, attempts to find the most likely
arrangement of these points. In our case, these points corre-
spond to the locations of the network nodes, and the inter-
point distances are estimated using the maximum-likelihood
estimator (MLE) for the large-scale path loss model in [14]
and the RSS measurements made by the nodes. In order to
mitigate the effects of fading error on the RSS measurements
for each link, we use the average RSS over five channels for
each link.

The dwMDS cost function is

S = 2
∑
i 6=j

wij(δij − dij(X))2 +
∑
i

ri‖xi − x̄i‖2, (1)

where δij is the estimated distance between nodes i and
j, dij(X) is the distance between nodes i and j for the
node location matrix X , wij is a weighting factor which
represents the quality of the distance estimate, xi is the ith
node location, x̄i represents an a priori estimate of the ith
node location, and ri is a weight that represents the quality of
the a priori estimate. The x̄i could come, for example, from
GPS receivers attached to the nodes or from coarse location
estimates contributed by the end user. The cost function is then
minimized over the node location matrix X .

We envision that the user interface might include a method
for the users to mark (for example, by tapping on a touch-
screen) the approximate node locations (x̄i) on a map or aerial
image, similar to those provided by Google Maps. Building
shapes could be directly inferred from the satellite imagery
using edge detection. In addition, end users like SOF have
access to building plans, which could also function as input to

the software interface. We leave the design of the user interface
for future work, but note that the shape of the building around
which the nodes are deployed further constrains the locations
of the nodes. We augment the dwMDS cost function in order
to include the building shape constraint

S = 2
∑
i 6=j

wij(δij−dij(X))2+
∑
i

ri‖xi−x̄i‖2+a
∑
i

‖xi−p‖2,

(2)
where p is the nearest point on the perimeter to xi and a is
a weighting factor that represents the quality of the perimeter
information.

Another possible way to improve network self-localization
is to use nodes that include GPS capability. Current commer-
cial GPS devices are capable of localizing to as little as 2 m
within 30 s of deployment, and are inexpensive thanks to the
rise of the mobile phone. The GPS-based node locations may
be used as a priori information in (2) or in addition to it. In
fact, if GPS can reliably localize to 2 m and the end user only
requires coarse target tracking, RTI might be performed using
the GPS measurements alone. It is important to note that GPS
receivers require unobstructed views of the sky to accurately
localize, so we may not be able to rely on GPS in situations
where the nodes are not exposed to the sky.

C. Sensor Network Self-Calibration

The tracking system must also establish baseline RSS
distributions for each link in order to quantify changes in
RSS and localize motion. Since it is not possible for end
users to remove the antagonists or hostages from a building in
order to perform calibration measurements, these distributions
must be estimated online. For multi-channel KRTI, it is also
necessary to decide which frequency channels to use. We
describe our methods for online baseline RSS estimation and
channel selection below.

Baseline RSS estimation: KRTI relies on keeping two his-
tograms of RSS measurements for each link in the network and
comparing those distributions in order to determine whether
or not people are moving near each link. Self- calibration after
deployment occurs in real-time by continuously calculating the
long-term histogram and using it as a baseline for detecting
human motion. The long-term histogram converges to what
would be seen in a calibration to be useful for finding both
moving and stationary people in the building. The convergence
speed is adjustable, but we find that good performance is
achieved with parameters that require about 30 s for con-
vergence. According to our end user contacts, most barricade
scenarios last long enough (sometimes multiple days) to allow
such a convergence time. We note that people must move
periodically in order for our tracking system to locate them. If
they remain stationary for a period of time beyond the memory
of both histograms, they will disappear from the tracking
image.

Channel Selection: We leverage frequency diversity in our
test system and demonstrate through multiple experiments that
it improves tracking performance. The fading experienced by
each link in the network is frequency selective, i.e., the RSS



is different due to the different constructive or destructive
combinations of the multipath components as a function of
frequency. Transmitting on multiple channels makes it more
likely that a channel will be found on which each link can be
used reliably for RTI.

The best channels for RTI are those in an anti-fade, because
the RSS on these channels are typically strongly affected
only when a human target is blocking the line between the
two nodes of the link, and not when she is moving at other
positions [17]. In other words, anti-fade links are the most
spatially informative [6], [5]. For each link, we choose the
channel with the highest average RSS, because these channels
are most likely to be in an anti-fade. There are other options
for combining information from multiple channels, e.g., using
the best n channels, but we leave the exploration of these
options for future work. For multi-channel KRTI, we allow an
additional 30 s for channel selection, leading to a total of 60
s for calibration and channel selection.

III. EXPERIMENTS

In this work, we present results both from real-time experi-
ments as well as experiments that were used in post-processing
for analysis of system design. We perform experiments at the
following sites (the building layouts are presented in Figure 2):
• Site A: A 110 square meter single floor of a modern

home in a typical suburb, comprised of four rooms and
a bathroom. (33 nodes deployed)

• Site B: A 50 square meter building comprised of 2 rooms.
(34 nodes deployed)

• Site C: A 55 square meter living space comprised of a
single room. (36 nodes deployed)

In each case, the nodes are deployed as uniformly as possi-
ble around the perimeter of the building and data are collected
using directional and omni-directional antennas while a human
target follows planned routes throughout the building. The
tracking data are analyzed in post-processing to determine the
accuracy of the system. We study the tracking performance
when fewer nodes are used to surround each location by using
RSS measurements made at a subset of the nodes from each
deployment. Additionally, we study the effects of poor node
self-localization by adding noise to the known locations of the
nodes.

A. Tracking

Before pursuing our research objectives relating to self-
localization and self-calibration, we first evaluate the tracking
performance of a system when the node locations are known
exactly for each of the three experiments. Knowing the per-
formance with exact node locations is important as a baseline
for evaluating the effect of automatic configuration on tracking
accuracy during rapid deployment.

B. Node Self-Localization

In order to test the accuracy of node self-localization
methods like dwMDS, we precisely record the positions of
each node during each deployment. During the calibration

Fig. 2. Experiment sites

phase immediately after each deployment, we apply dwMDS
in order to estimate the relative locations of the nodes.

We are also interested in the performance of our tracking
system in the presence of imperfect knowledge of the node
locations. In order to understand the effects of poor node
self-localization, we simulate the circumstance by adding
Gaussian noise to the true node locations and comparing the
corresponding tracking results to those we achieve with the
correct node locations.

C. Antenna Type

The use of better radio hardware may improve the per-
formance of an RTI tracking system. For example, we are
interested in determining whether or not the use of direc-
tional antennas results in better tracking performance. Previous
research of RTI [18], [19] has relied primarily on omni-
directional antennas, which radiate more energy away from
the tracking area than they do into it. We expect that the
more focused gain pattern of the directional antennas should
maximize the amount of power being radiated through the
building, as opposed to away from it or around it, leading to
a more connected network, a higher average fade level, and
better tracking performance. Maximizing the power radiated
into the building is especially important in through-building
imaging, where the signal may need to propagate through
multiple exterior and interior walls.

In order to examine the benefits of directional antennas for
our application, we first perform each experiment with radios
that include a PCB microstrip inverted-F antenna with an



omni-directional gain pattern. We then repeat the experiment
using circularly polarized 9 dBi directional antennas. In each
case, we set the transmitted power for our radios to the
maximum power allowed by the hardware in order to increase
network connectivity as much as possible.

D. Network Size

It is important to understand the trade-off between the
number of nodes in the RTI network and the corresponding
tracking accuracy, because the tracking system must offer a
fast and simple deployment in order to be useful to the end
users. In some barricade scenarios the hostile targets may be
armed, making it dangerous for SOF to spend time setting up
nodes around the perimeter of the building. In these cases,
smaller networks may allow for safer deployments and still
offer useful tracking data. For example, using 30-40 nodes
may allow for tracking a person to within 0.3 m of their true
location, but the end user may wish to sacrifice some accuracy
in order deploy the system quickly in a dangerous situation,
e.g., using 10 nodes and accepting a tracking error of 1 m.

We examine the tracking performance for networks which
include 10 to 36 nodes. At each experimental deployment, the
nodes are placed around the perimeter of the building in an
approximately equally spaced pattern.

E. Collaboration with End Users

In order understand the constraints of the potential end users
of our system, we collaborate with one of Utah’s largest SWAT
operations, the Unified Police Department in Salt Lake City.
The purpose of our collaboration is to obtain explicit feedback
about our proposed system, whether it would actually help in
tactical operations, and what physical constraints need to be
addressed in order for such a system to become important and
useful to end users.

We organize an extensive through-building tracking demon-
stration day for members of the SWAT team and other law
enforcement agencies in order to deploy our tracking system
around a home in Salt Lake City and simulate hostage and bar-
ricade scenarios while law enforcement officers offer valuable
feedback about system deployment and performance.

IV. RESULTS

We present the major results from our experimental de-
ployments below. We discuss general tracking results in
Section IV-A, self-localization results and the corresponding
effects on tracking performance in Section IV-B, a comparison
of tracking performance for directional and omni-directional
antennas in Section IV-C, and the effects on tracking per-
formance of using fewer nodes in Section IV-D. Finally,
we discuss the feedback from local SOF after a real-time
demonstration of the system in Section IV-E.

A. Tracking

At Site A, with exact locations of nodes known, an average
tracking error of approximately 1.1 meters was achieved with
33 nodes over 110 square meters. At Site B, an average

tracking error of 0.46 meters was achieved with 34 nodes
over 50 square meters. At Site C, an average tracking error
of 0.54 meters was achieved with 36 nodes over 55 square
meters. Some tracking results for Sites A and B are depicted
in Figure 3.

We expect that with a higher density of nodes per unit area,
we should see a lower average tracking error, and this can be
seen in the results presented in Table I. As seen in Figure 5,
Sites B and C, which are approximately the same size and
have similar node-to-area ratios, show similar average tracking
results. Site A, which represents a larger area and is covered
with less nodes, shows slightly higher average tracking error.

While these tracking results would be beneficial according
to our SOF contacts, they are achieved using near-perfect
knowledge of the node locations, which SOF may not have
access to in most scenarios. The sequel discusses node self-
localization results.

Site A Site B Site C
10-node system 1.27 m 1.19 m 0.89 m
20-node system 1.22 m 0.70 m 0.68 m
30-node system 1.01 m 0.49 m 0.58 m
Random estimator 6.0 m 3.6 m 3.8 m

TABLE I
AVERAGE TRACKING ERROR FOR BEST ANTENNA TYPE AT EACH SITE

COMPARED TO RANDOM ESTIMATOR AND NUMBER OF NODES.

B. Self-Localization

In Figure 4(a), we show the dwMDS results for Site A
without any a priori information about the node locations
(ri = 0 for all i in (1)), which yield an average error of 3.3
m. The reason for the high average error is the rich multipath
environment of the building, which leads to small-scale fading,
and the failing of the large scale path loss model. We will show
that we can still achieve acceptable human target tracking
results with this level of error in the network self-localization,
but we can improve the self-localization by including some
information from the end user about the deployment, specif-
ically, a priori estimates of the node locations and building
perimeter shape.

Figure 4(b) shows the results of dwMDS for Site A with
coarse (2 m average error) a priori node locations and the
augmented cost function (2). In (2), this means that ri > 0
and a > 0, somewhat mitigating the errors caused by the
imperfect large scale path loss model. Using the augmented
cost function leads to an average error of 1.5 m.

We note that our work investigates the accuracy of target
tracking vs. the accuracy of node locations regardless of the
methods used to localize the nodes. As expected, the accuracy
of tracking decreases as the error of node location increases.
However, keeping the mean squared error (MSE) of the node
location estimates below 4 m2 allows for average tracking
errors of less than 1.5 m. The results are presented in Figure
5.
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Fig. 3. A subset of tracking results from: (a) Site A using directional antennas
and multi-channel KRTI resulting in an average error of 1.1 m; (b) Site B
using directional antennas and multi-channel KRTI resulting in an average
error of 0.46 m.

C. Directional vs. Omni-Directional Antennas

Figure 5 shows the tracking performance at each experiment
site vs. error variance in the network self-localization for both
antenna types. Directional antennas offer better performance
at Site A, but the two types of antennas result in similar
performance at Sites B and C.

The difference in the performance may be due in part to
network connectivity: Site A shows improved connectivity,
in terms of packet reception rates, when using directional
antennas instead of omni-directional antennas, while Sites
B and C exhibit similar network connectivity regardless of
antenna type.

D. Number of Nodes

Figure 6 shows the tracking results from each site, for
network sizes ranging from 10 to 30 nodes, and both antenna
types. Tracking results for the maximum number of nodes at
each site can be seen in Figure 5. Surprisingly, we find that
with as few as ten nodes, we are able to achieve less than 1.3
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Fig. 4. Multi-channel dwMDS (a) without a priori information or augmented
cost function and (b) with a priori information and augmented cost function.

m average tracking error in most cases. If we guess randomly
and uniformly at the location of the target across the area of
the deployments at Sites A, B, and C, we find average errors
of 6.0 m, 3.6 m, and 3.8 meters respectively.

The tracking accuracy appears to improve with the number
of nodes. Although our experiments used a maximum of 36
nodes, we would expect that further increasing the number of
nodes will further decrease the tracking error.

E. End User Feedback

After demonstration of our through-building tracking sys-
tem, we interviewed SWAT commander Lt. Jake Petersen to
receive his feedback and advice regarding the system. The
following are quotes from the interview with their respective
times in the video. The interview in its entirety can be found at
http://www.youtube.com/watch?v=QnQKfz-AEi4. Note that a
portion of the tracking demo is contained in the video at time
1:00.
• “This is something that I would use on really any

barricaded subject or any hostage situation. Pinpointing



exactly where the individual is, or even the hostages,
allows us to make a save for these victims much easier.
Really it is going to save lives, that’s the mission of
SWAT.” (1:45)

• “Making sure that the technology works is really impor-
tant and you’ve given me a lot of confidence in that here
today.” (4:20)

• “I would not be here if I didn’t think that this product
could save lives, that’s the honest truth.” (16:16)

• “I want to save their lives, and I believe this kind of thing
could help us do that.” (17:00)

V. CONCLUSION

We have examined the feasibility of a rapidly deployable
through-building RTI system for SWAT and other SOF. We
have shown that our system can rapidly self-localize and
self-calibrate after deployment. The self-localization process
requires minimal input from the user, and the system produces
useful tracking results even when the node self-localization
contains errors. We have also seen that directional antennas
help increase through-building tracking accuracies as more
power is radiated through the area of interest. Future devel-
opment may use higher-power transmitters that provide full
connectivity for larger building sizes.

Finally, through our interviews with SOF end users, we have
further validated the need for this technology in tactical oper-
ations. We have shown that a simple, rapidly deployable, and
user-friendly through-building tracking system is technically
feasible. Future work will include the development of a user
interface for SOF that will allow them to input deployment
information, e.g., the building shape and coarse node locations,
into the system, and then coordinate operations on top of the
tracking data it generates.
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Fig. 5. Average tracking error vs. mean squared error of node locations for
directional and omni-directional antennas at (a) Site A, (b) Site B, and (c)
Site C.

10 15 20 25 30
Number of Sensors

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
vg

.T
ra

ck
in

g
E

rr
or

(m
)

Site A (directional)
Site A (omni-directional)

(a)

10 15 20 25 30
Number of Sensors

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

A
vg

.T
ra

ck
in

g
E

rr
or

(m
)

Site B (directional)
Site B (omni-directional)

(b)

10 15 20 25 30
Number of Sensors

0.6

0.8

1.0

1.2

1.4

A
vg

.T
ra

ck
in

g
E

rr
or

(m
)

Site C (directional)
Site C (omni-directional)

(c)

Fig. 6. Average tracking error vs. number of nodes deployed for directional
and omni-directional antennas at (a) Site A, (b) Site B, and (c) Site C.


